Data Portal @ linkeddatafragments.org

DBpedia 2014

Search DBpedia 2014 by triple pattern

Matches in DBpedia 2014 for { ?s ?p Dietary elements (commonly known as dietary minerals or mineral nutrients) are the chemical elements required by living organisms, other than the four elements carbon, hydrogen, nitrogen, and oxygen present in common organic molecules. The term "dietary mineral" is archaic, as it describes chemical elements rather than actual minerals.Chemical elements in order of abundance in the human body include the seven major dietary elements calcium, phosphorus, potassium, sulfur, sodium, chlorine, and magnesium. Important "trace" or minor dietary elements, necessary for mammalian life, include iron, cobalt, copper, zinc, molybdenum, iodine, and selenium (see below for detailed discussion).Over twenty dietary elements are necessary for mammals, and several more for various other types of life. The total number of chemical elements that are absolutely needed is not known for any organism. Ultratrace amounts of some elements (e.g., boron, chromium) are known to clearly have a role but the exact biochemical nature is unknown, and others (e.g. arsenic, silicon) are suspected to have a role in health, but without proof.Most chemical element that enter into the dietary physiology of organisms are in the form of simple compounds. Larger chemical compound of elements need to be broken down for absorption. Plants absorb dissolved elements in soils, which are subsequently picked up by the herbivores that eat them and so on, the elements move up the food chain. Larger organisms may also consume soil (geophagia) and visit salt licks to obtain limiting dietary elements they are unable to acquire through other components of their diet.Bacteria play an essential role in the weathering of primary elements that results in the release of nutrients for their own nutrition and for the nutrition of others in the ecological food chain. One element, cobalt, is available for use by animals only after having been processed into complicated molecules (e.g., vitamin B12), by bacteria. Scientists are only recently starting to appreciate the magnitude and role that microorganisms have in the global cycling and formation of biominerals.. }

Showing items 1 to 1 of 1 with 100 items per page.