Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Domain_(mathematical_analysis)> ?p ?o. }
Showing items 1 to 37 of
37
with 100 items per page.
- Domain_(mathematical_analysis) abstract "In mathematical analysis, a domain is any connected open subset of a finite-dimensional vector space. This is a different concept than the domain of a function, though it is often used for that purpose, for example in partial differential equations and Sobolev spaces.Various degrees of smoothness of the boundary of the domain are required for various properties of functions defined on the domain to hold, such as integral theorems (Green's theorem, Stokes theorem), properties of Sobolev spaces, and to define measures on the boundary and spaces of traces (spaces of smooth functions defined on the boundary). Commonly considered types of domains are domains with continuous boundary, Lipschitz boundary, C1 boundary, and so forth.A Bounded domain is a domain which is a bounded set, while an Exterior or external domain is the interior of the complement of a bounded domain.In complex analysis, a complex domain (or simply domain) is any connected open subset of the complex plane ℂ. For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth. Often, a complex domain serves as the domain of definition for a holomorphic function.In the study of several complex variables, the definition of a domain is extended to include any connected open subset of ℂn.".
- Domain_(mathematical_analysis) wikiPageExternalLink mathematica.sns.it.
- Domain_(mathematical_analysis) wikiPageExternalLink picone_parte_I.pdf.
- Domain_(mathematical_analysis) wikiPageExternalLink theoriederreell00hahngoog.
- Domain_(mathematical_analysis) wikiPageID "16796643".
- Domain_(mathematical_analysis) wikiPageRevisionID "597140689".
- Domain_(mathematical_analysis) hasPhotoCollection Domain_(mathematical_analysis).
- Domain_(mathematical_analysis) sign Constantin_Carathéodory.
- Domain_(mathematical_analysis) text "Definition. Eine offene Punktmenge heißt zusammenhängend, wenn man sie nicht als Summe von zwei offenen Punktmengen darstellen kann. Eine offene zusammenhängende Punktmenge heißt ein Gebiet.".
- Domain_(mathematical_analysis) subject Category:Mathematical_analysis.
- Domain_(mathematical_analysis) subject Category:Partial_differential_equations.
- Domain_(mathematical_analysis) subject Category:Topology.
- Domain_(mathematical_analysis) type Abstraction100002137.
- Domain_(mathematical_analysis) type Communication100033020.
- Domain_(mathematical_analysis) type DifferentialEquation106670521.
- Domain_(mathematical_analysis) type Equation106669864.
- Domain_(mathematical_analysis) type MathematicalStatement106732169.
- Domain_(mathematical_analysis) type Message106598915.
- Domain_(mathematical_analysis) type PartialDifferentialEquation106670866.
- Domain_(mathematical_analysis) type PartialDifferentialEquations.
- Domain_(mathematical_analysis) type Statement106722453.
- Domain_(mathematical_analysis) comment "In mathematical analysis, a domain is any connected open subset of a finite-dimensional vector space.".
- Domain_(mathematical_analysis) label "Domain (mathematical analysis)".
- Domain_(mathematical_analysis) label "Domínio (análise complexa)".
- Domain_(mathematical_analysis) label "Gebiet (Mathematik)".
- Domain_(mathematical_analysis) label "Obszar".
- Domain_(mathematical_analysis) label "領域 (解析学)".
- Domain_(mathematical_analysis) sameAs Gebiet_(Mathematik).
- Domain_(mathematical_analysis) sameAs 領域_(解析学).
- Domain_(mathematical_analysis) sameAs Obszar.
- Domain_(mathematical_analysis) sameAs Domínio_(análise_complexa).
- Domain_(mathematical_analysis) sameAs m.0406gvy.
- Domain_(mathematical_analysis) sameAs Q11235244.
- Domain_(mathematical_analysis) sameAs Q11235244.
- Domain_(mathematical_analysis) sameAs Domain_(mathematical_analysis).
- Domain_(mathematical_analysis) wasDerivedFrom Domain_(mathematical_analysis)?oldid=597140689.
- Domain_(mathematical_analysis) isPrimaryTopicOf Domain_(mathematical_analysis).