Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Entropy_(information_theory)> ?p ?o. }
Showing items 1 to 54 of
54
with 100 items per page.
- Entropy_(information_theory) abstract "In information theory, entropy is a measure of the uncertainty in a random variable. In this context, the term usually refers to the Shannon entropy, which quantifies the expected value of the information contained in a message. Entropy is typically measured in bits, nats, or bans. Shannon entropy is the average unpredictability in a random variable, which is equivalent to its information content. Shannon entropy provides an absolute limit on the best possible lossless encoding or compression of any communication, assuming that the communication may be represented as a sequence of independent and identically distributed random variables.A single toss of a fair coin has an entropy of one bit. A series of two fair coin tosses has an entropy of two bits. The number of fair coin tosses is its entropy in bits. This random selection between two outcomes in a sequence over time, whether the outcomes are equally probable or not, is often referred to as a Bernoulli process. The entropy of such a process is given by the binary entropy function. The entropy rate for a fair coin toss is one bit per toss. However, if the coin is not fair, then the uncertainty, and hence the entropy rate, is lower. This is because, if asked to predict the next outcome, we could choose the most frequent result and be right more often than wrong. The difference between what we know, or predict, and the information that the unfair coin toss reveals to us is less than one heads-or-tails "message", or bit, per toss.This definition of "entropy" was introduced by Claude E. Shannon in his 1948 paper "A Mathematical Theory of Communication".".
- Entropy_(information_theory) thumbnail Entropy_flip_2_coins.jpg?width=300.
- Entropy_(information_theory) wikiPageExternalLink Information.Equal.Entropy.
- Entropy_(information_theory) wikiPageExternalLink information.is.not.uncertainty.html.
- Entropy_(information_theory) wikiPageExternalLink 1404.1998.
- Entropy_(information_theory) wikiPageExternalLink books?id=_77lvx7y8joC.
- Entropy_(information_theory) wikiPageExternalLink An_Intuitive_Guide_to_the_Concept_of_Entropy_Arising_in_Various_Sectors_of_Science.
- Entropy_(information_theory) wikiPageExternalLink ENTROPY.
- Entropy_(information_theory) wikiPageExternalLink ENTRINFO.html.
- Entropy_(information_theory) wikiPageExternalLink infogain.html.
- Entropy_(information_theory) wikiPageExternalLink entropy.
- Entropy_(information_theory) wikiPageExternalLink 6.html.
- Entropy_(information_theory) wikiPageExternalLink www.shannonentropy.netmark.pl.
- Entropy_(information_theory) wikiPageExternalLink 3427.
- Entropy_(information_theory) wikiPageID "15445".
- Entropy_(information_theory) wikiPageRevisionID "606177168".
- Entropy_(information_theory) hasPhotoCollection Entropy_(information_theory).
- Entropy_(information_theory) id "968".
- Entropy_(information_theory) id "p/e035740".
- Entropy_(information_theory) title "Entropy".
- Entropy_(information_theory) title "Shannon's entropy".
- Entropy_(information_theory) subject Category:Entropy_and_information.
- Entropy_(information_theory) subject Category:Information_theory.
- Entropy_(information_theory) subject Category:Randomness.
- Entropy_(information_theory) subject Category:Statistical_theory.
- Entropy_(information_theory) comment "In information theory, entropy is a measure of the uncertainty in a random variable. In this context, the term usually refers to the Shannon entropy, which quantifies the expected value of the information contained in a message. Entropy is typically measured in bits, nats, or bans. Shannon entropy is the average unpredictability in a random variable, which is equivalent to its information content.".
- Entropy_(information_theory) label "Entropia (teoria dell'informazione)".
- Entropy_(information_theory) label "Entropia (teoria informacji)".
- Entropy_(information_theory) label "Entropia da informação".
- Entropy_(information_theory) label "Entropie (Informationstheorie)".
- Entropy_(information_theory) label "Entropie (informatietheorie)".
- Entropy_(information_theory) label "Entropie de Shannon".
- Entropy_(information_theory) label "Entropy (information theory)".
- Entropy_(information_theory) label "Entropía (información)".
- Entropy_(information_theory) label "Информационная энтропия".
- Entropy_(information_theory) label "اعتلاج (نظرية المعلومات)".
- Entropy_(information_theory) label "情報量".
- Entropy_(information_theory) label "熵 (信息论)".
- Entropy_(information_theory) sameAs Entropie_(Informationstheorie).
- Entropy_(information_theory) sameAs Εντροπία_πληροφοριών.
- Entropy_(information_theory) sameAs Entropía_(información).
- Entropy_(information_theory) sameAs Entropie_de_Shannon.
- Entropy_(information_theory) sameAs Entropia_(teoria_dell'informazione).
- Entropy_(information_theory) sameAs 情報量.
- Entropy_(information_theory) sameAs 정보_엔트로피.
- Entropy_(information_theory) sameAs Entropie_(informatietheorie).
- Entropy_(information_theory) sameAs Entropia_(teoria_informacji).
- Entropy_(information_theory) sameAs Entropia_da_informação.
- Entropy_(information_theory) sameAs m.03zhv.
- Entropy_(information_theory) sameAs Q204570.
- Entropy_(information_theory) sameAs Q204570.
- Entropy_(information_theory) wasDerivedFrom Entropy_(information_theory)?oldid=606177168.
- Entropy_(information_theory) depiction Entropy_flip_2_coins.jpg.
- Entropy_(information_theory) isPrimaryTopicOf Entropy_(information_theory).