Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Schur's_lemma> ?p ?o. }
Showing items 1 to 34 of
34
with 100 items per page.
- Schur's_lemma abstract "In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0. An important special case occurs when M = N and φ is a self-map. The lemma is named after Issai Schur who used it to prove Schur orthogonality relations and develop the basics of the representation theory of finite groups. Schur's lemma admits generalisations to Lie groups and Lie algebras, the most common of which is due to Jacques Dixmier.".
- Schur's_lemma wikiPageID "521696".
- Schur's_lemma wikiPageRevisionID "543767157".
- Schur's_lemma hasPhotoCollection Schur's_lemma.
- Schur's_lemma subject Category:Lemmas.
- Schur's_lemma subject Category:Representation_theory.
- Schur's_lemma type Abstraction100002137.
- Schur's_lemma type Communication100033020.
- Schur's_lemma type Lemma106751833.
- Schur's_lemma type Lemmas.
- Schur's_lemma type Message106598915.
- Schur's_lemma type Proposition106750804.
- Schur's_lemma type Statement106722453.
- Schur's_lemma comment "In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0. An important special case occurs when M = N and φ is a self-map.".
- Schur's_lemma label "Lema de Schur".
- Schur's_lemma label "Lemma di Schur".
- Schur's_lemma label "Lemma van Schur".
- Schur's_lemma label "Lemma von Schur".
- Schur's_lemma label "Lemme de Schur".
- Schur's_lemma label "Schur's lemma".
- Schur's_lemma label "Лемма Шура".
- Schur's_lemma label "舒尔引理".
- Schur's_lemma sameAs Lemma_von_Schur.
- Schur's_lemma sameAs Lema_de_Schur.
- Schur's_lemma sameAs Lemme_de_Schur.
- Schur's_lemma sameAs Lemma_di_Schur.
- Schur's_lemma sameAs 슈어_보조정리.
- Schur's_lemma sameAs Lemma_van_Schur.
- Schur's_lemma sameAs m.02l3pj.
- Schur's_lemma sameAs Q1816952.
- Schur's_lemma sameAs Q1816952.
- Schur's_lemma sameAs Schur's_lemma.
- Schur's_lemma wasDerivedFrom Schur's_lemma?oldid=543767157.
- Schur's_lemma isPrimaryTopicOf Schur's_lemma.