Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Cantor's_diagonal_argument> ?p ?o. }
Showing items 1 to 56 of
56
with 100 items per page.
- Cantor's_diagonal_argument abstract "In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument or the diagonal method, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers.Such sets are now known as uncountable sets, and the size of infinite sets is now treated by the theory of cardinal numbers which Cantor began.The diagonal argument was not Cantor's first proof of the uncountability of the real numbers; it was actually published much later than his first proof, which appeared in 1874.However, it demonstrates a powerful and general technique that has since been used in a wide range of proofs, also known as diagonal arguments by analogy with the argument used in this proof. The most famous examples are perhaps Russell's paradox, the first of Gödel's incompleteness theorems, and Turing's answer to the Entscheidungsproblem.".
- Cantor's_diagonal_argument thumbnail Diagonal_argument_01_svg.svg?width=300.
- Cantor's_diagonal_argument wikiPageExternalLink kmath371.htm.
- Cantor's_diagonal_argument wikiPageID "51426".
- Cantor's_diagonal_argument wikiPageRevisionID "605429782".
- Cantor's_diagonal_argument hasPhotoCollection Cantor's_diagonal_argument.
- Cantor's_diagonal_argument id "CantorDiagonalMethod".
- Cantor's_diagonal_argument title "Cantor Diagonal Method".
- Cantor's_diagonal_argument subject Category:Arguments.
- Cantor's_diagonal_argument subject Category:Cardinal_numbers.
- Cantor's_diagonal_argument subject Category:Infinity.
- Cantor's_diagonal_argument subject Category:Mathematical_proofs.
- Cantor's_diagonal_argument subject Category:Set_theory.
- Cantor's_diagonal_argument subject Category:Theorems_in_the_foundations_of_mathematics.
- Cantor's_diagonal_argument type Abstraction100002137.
- Cantor's_diagonal_argument type Argument106648724.
- Cantor's_diagonal_argument type Arguments.
- Cantor's_diagonal_argument type Communication100033020.
- Cantor's_diagonal_argument type Evidence106643408.
- Cantor's_diagonal_argument type Indication106797169.
- Cantor's_diagonal_argument type MathematicalProof106647864.
- Cantor's_diagonal_argument type MathematicalProofs.
- Cantor's_diagonal_argument type Message106598915.
- Cantor's_diagonal_argument type Proof106647614.
- Cantor's_diagonal_argument type Proposition106750804.
- Cantor's_diagonal_argument type Statement106722453.
- Cantor's_diagonal_argument type Theorem106752293.
- Cantor's_diagonal_argument type TheoremsInTheFoundationsOfMathematics.
- Cantor's_diagonal_argument comment "In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument or the diagonal method, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers.Such sets are now known as uncountable sets, and the size of infinite sets is now treated by the theory of cardinal numbers which Cantor began.The diagonal argument was not Cantor's first proof of the uncountability of the real numbers; it was actually published much later than his first proof, which appeared in 1874.However, it demonstrates a powerful and general technique that has since been used in a wide range of proofs, also known as diagonal arguments by analogy with the argument used in this proof. ".
- Cantor's_diagonal_argument label "Argomento diagonale di Cantor".
- Cantor's_diagonal_argument label "Argument de la diagonale de Cantor".
- Cantor's_diagonal_argument label "Argumento de diagonalização de Cantor".
- Cantor's_diagonal_argument label "Argumento de la diagonal de Cantor".
- Cantor's_diagonal_argument label "Cantor's diagonal argument".
- Cantor's_diagonal_argument label "Cantors zweites Diagonalargument".
- Cantor's_diagonal_argument label "Diagonaalbewijs van Cantor".
- Cantor's_diagonal_argument label "Metoda przekątniowa".
- Cantor's_diagonal_argument label "カントールの対角線論法".
- Cantor's_diagonal_argument label "對角論證法".
- Cantor's_diagonal_argument sameAs Cantorova_diagonální_metoda.
- Cantor's_diagonal_argument sameAs Cantors_zweites_Diagonalargument.
- Cantor's_diagonal_argument sameAs Argumento_de_la_diagonal_de_Cantor.
- Cantor's_diagonal_argument sameAs Argument_de_la_diagonale_de_Cantor.
- Cantor's_diagonal_argument sameAs Argomento_diagonale_di_Cantor.
- Cantor's_diagonal_argument sameAs カントールの対角線論法.
- Cantor's_diagonal_argument sameAs 대각선_논법.
- Cantor's_diagonal_argument sameAs Diagonaalbewijs_van_Cantor.
- Cantor's_diagonal_argument sameAs Metoda_przekątniowa.
- Cantor's_diagonal_argument sameAs Argumento_de_diagonalização_de_Cantor.
- Cantor's_diagonal_argument sameAs m.0dkmf.
- Cantor's_diagonal_argument sameAs Q729471.
- Cantor's_diagonal_argument sameAs Q729471.
- Cantor's_diagonal_argument sameAs Cantor's_diagonal_argument.
- Cantor's_diagonal_argument wasDerivedFrom Cantor's_diagonal_argument?oldid=605429782.
- Cantor's_diagonal_argument depiction Diagonal_argument_01_svg.svg.
- Cantor's_diagonal_argument isPrimaryTopicOf Cantor's_diagonal_argument.