Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Complement_(set_theory)> ?p ?o. }
Showing items 1 to 49 of
49
with 100 items per page.
- Complement_(set_theory) abstract "In set theory, a complement of a set A refers to things not in (that is, things outside of) A. The relative complement of A with respect to a set B is the set of elements in B but not in A. When all sets under consideration are considered to be subsets of a given set U, the absolute complement of A is the set of all elements in U but not in A.".
- Complement_(set_theory) thumbnail Venn0010.svg?width=300.
- Complement_(set_theory) wikiPageID "54347".
- Complement_(set_theory) wikiPageRevisionID "604305441".
- Complement_(set_theory) hasPhotoCollection Complement_(set_theory).
- Complement_(set_theory) id "Complement".
- Complement_(set_theory) id "ComplementSet".
- Complement_(set_theory) title "Complement Set".
- Complement_(set_theory) title "Complement".
- Complement_(set_theory) subject Category:Basic_concepts_in_set_theory.
- Complement_(set_theory) subject Category:Binary_operations.
- Complement_(set_theory) type Abstraction100002137.
- Complement_(set_theory) type BasicConceptsInSetTheory.
- Complement_(set_theory) type Cognition100023271.
- Complement_(set_theory) type Concept105835747.
- Complement_(set_theory) type Content105809192.
- Complement_(set_theory) type Idea105833840.
- Complement_(set_theory) type PsychologicalFeature100023100.
- Complement_(set_theory) comment "In set theory, a complement of a set A refers to things not in (that is, things outside of) A. The relative complement of A with respect to a set B is the set of elements in B but not in A. When all sets under consideration are considered to be subsets of a given set U, the absolute complement of A is the set of all elements in U but not in A.".
- Complement_(set_theory) label "Complement (set theory)".
- Complement_(set_theory) label "Complement (verzamelingenleer)".
- Complement_(set_theory) label "Complementar".
- Complement_(set_theory) label "Complemento de un conjunto".
- Complement_(set_theory) label "Complémentaire (théorie des ensembles)".
- Complement_(set_theory) label "Dopełnienie zbioru".
- Complement_(set_theory) label "Insieme complemento".
- Complement_(set_theory) label "Komplement (Mengenlehre)".
- Complement_(set_theory) label "Разность множеств".
- Complement_(set_theory) label "مجموعة مكملة (نظرية المجموعات)".
- Complement_(set_theory) label "差集合".
- Complement_(set_theory) label "补集".
- Complement_(set_theory) sameAs Doplněk_množiny.
- Complement_(set_theory) sameAs Komplement_(Mengenlehre).
- Complement_(set_theory) sameAs Complemento_de_un_conjunto.
- Complement_(set_theory) sameAs Osagarri_(multzo-teoria).
- Complement_(set_theory) sameAs Complémentaire_(théorie_des_ensembles).
- Complement_(set_theory) sameAs Insieme_complemento.
- Complement_(set_theory) sameAs 差集合.
- Complement_(set_theory) sameAs 여집합.
- Complement_(set_theory) sameAs Complement_(verzamelingenleer).
- Complement_(set_theory) sameAs Dopełnienie_zbioru.
- Complement_(set_theory) sameAs Complementar.
- Complement_(set_theory) sameAs m.0f65d.
- Complement_(set_theory) sameAs Q242767.
- Complement_(set_theory) sameAs Q242767.
- Complement_(set_theory) sameAs Complement_(set_theory).
- Complement_(set_theory) wasDerivedFrom Complement_(set_theory)?oldid=604305441.
- Complement_(set_theory) depiction Venn0010.svg.
- Complement_(set_theory) isPrimaryTopicOf Complement_(set_theory).