Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Compression_(functional_analysis)> ?p ?o. }
Showing items 1 to 14 of
14
with 100 items per page.
- Compression_(functional_analysis) abstract "In functional analysis, the compression of a linear operator T on a Hilbert space to a subspace K is the operator,where is the orthogonal projection onto K. This is a natural way to obtain an operator on K from an operator on the whole Hilbert space. If K is an invariant subspace for T, then the compression of T to K is the restricted operator K→K sending k to Tk. More generally, for a linear operator T on a Hilbert space and an isometry V on a subspace of , define the compression of T to by , where is the adjoint of V. If T is a self-adjoint operator, then the compression is also self-adjoint.When V is replaced by the identity function , , and we acquire the special definition above.".
- Compression_(functional_analysis) wikiPageID "681190".
- Compression_(functional_analysis) wikiPageRevisionID "595696355".
- Compression_(functional_analysis) hasPhotoCollection Compression_(functional_analysis).
- Compression_(functional_analysis) subject Category:Functional_analysis.
- Compression_(functional_analysis) comment "In functional analysis, the compression of a linear operator T on a Hilbert space to a subspace K is the operator,where is the orthogonal projection onto K. This is a natural way to obtain an operator on K from an operator on the whole Hilbert space. If K is an invariant subspace for T, then the compression of T to K is the restricted operator K→K sending k to Tk.".
- Compression_(functional_analysis) label "Compression (functional analysis)".
- Compression_(functional_analysis) label "圧縮 (関数解析学)".
- Compression_(functional_analysis) sameAs 圧縮_(関数解析学).
- Compression_(functional_analysis) sameAs m.032f_9.
- Compression_(functional_analysis) sameAs Q5157034.
- Compression_(functional_analysis) sameAs Q5157034.
- Compression_(functional_analysis) wasDerivedFrom Compression_(functional_analysis)?oldid=595696355.
- Compression_(functional_analysis) isPrimaryTopicOf Compression_(functional_analysis).