Matches in DBpedia 2014 for { <http://dbpedia.org/resource/De_Branges's_theorem> ?p ?o. }
Showing items 1 to 60 of
60
with 100 items per page.
- De_Branges's_theorem abstract "In complex analysis, de Branges's theorem, or the Bieberbach conjecture, is a theorem that gives a necessary condition on a holomorphic function in order for it to map the open unit disk of the complex plane injectively to the complex plane. It was posed by Ludwig Bieberbach (1916) and finally proven by Louis de Branges (1985).The statement concerns the Taylor coefficients an of such a function, normalized as is always possible so that a0 = 0 and a1 = 1. That is, we consider a function defined on the open unit disk which is holomorphic and injective (univalent) with Taylor series of the formsuch functions are called schlicht. The theorem then states that".
- De_Branges's_theorem wikiPageExternalLink prep0513.pdf.
- De_Branges's_theorem wikiPageExternalLink S0002-9904-1936-06300-7.
- De_Branges's_theorem wikiPageExternalLink JFM-item?49.0714.01.
- De_Branges's_theorem wikiPageID "252075".
- De_Branges's_theorem wikiPageRevisionID "593546196".
- De_Branges's_theorem author2Link "John Edensor Littlewood".
- De_Branges's_theorem authorlink "Louis de Branges de Bourcia".
- De_Branges's_theorem authorlink "Ludwig Bieberbach".
- De_Branges's_theorem authorlink "Raymond Paley".
- De_Branges's_theorem first "E.G.".
- De_Branges's_theorem first "Louis".
- De_Branges's_theorem first "Ludwig".
- De_Branges's_theorem hasPhotoCollection De_Branges's_theorem.
- De_Branges's_theorem id "B/b016150".
- De_Branges's_theorem last "Bieberbach".
- De_Branges's_theorem last "Goluzina".
- De_Branges's_theorem last "Littlewood".
- De_Branges's_theorem last "Paley".
- De_Branges's_theorem last "de Branges".
- De_Branges's_theorem title "Bieberbach conjecture".
- De_Branges's_theorem year "1916".
- De_Branges's_theorem year "1932".
- De_Branges's_theorem year "1985".
- De_Branges's_theorem subject Category:Conjectures.
- De_Branges's_theorem subject Category:Theorems_in_complex_analysis.
- De_Branges's_theorem type Abstraction100002137.
- De_Branges's_theorem type Cognition100023271.
- De_Branges's_theorem type Communication100033020.
- De_Branges's_theorem type Concept105835747.
- De_Branges's_theorem type Conjectures.
- De_Branges's_theorem type Content105809192.
- De_Branges's_theorem type Hypothesis105888929.
- De_Branges's_theorem type Idea105833840.
- De_Branges's_theorem type Message106598915.
- De_Branges's_theorem type Proposition106750804.
- De_Branges's_theorem type PsychologicalFeature100023100.
- De_Branges's_theorem type Speculation105891783.
- De_Branges's_theorem type Statement106722453.
- De_Branges's_theorem type Theorem106752293.
- De_Branges's_theorem type TheoremsInComplexAnalysis.
- De_Branges's_theorem comment "In complex analysis, de Branges's theorem, or the Bieberbach conjecture, is a theorem that gives a necessary condition on a holomorphic function in order for it to map the open unit disk of the complex plane injectively to the complex plane. It was posed by Ludwig Bieberbach (1916) and finally proven by Louis de Branges (1985).The statement concerns the Taylor coefficients an of such a function, normalized as is always possible so that a0 = 0 and a1 = 1.".
- De_Branges's_theorem label "Bieberbachsche Vermutung".
- De_Branges's_theorem label "Conjecture de Bieberbach".
- De_Branges's_theorem label "De Branges's theorem".
- De_Branges's_theorem label "Teorema di de Branges".
- De_Branges's_theorem label "Vermoeden van Bieberbach".
- De_Branges's_theorem label "Гипотеза Бибербаха".
- De_Branges's_theorem label "ド・ブランジェの定理".
- De_Branges's_theorem sameAs Bieberbachsche_Vermutung.
- De_Branges's_theorem sameAs Conjecture_de_Bieberbach.
- De_Branges's_theorem sameAs Teorema_di_de_Branges.
- De_Branges's_theorem sameAs ド・ブランジェの定理.
- De_Branges's_theorem sameAs Vermoeden_van_Bieberbach.
- De_Branges's_theorem sameAs m.01ldjf.
- De_Branges's_theorem sameAs Q857089.
- De_Branges's_theorem sameAs Q857089.
- De_Branges's_theorem sameAs De_Branges's_theorem.
- De_Branges's_theorem wasDerivedFrom De_Branges's_theorem?oldid=593546196.
- De_Branges's_theorem isPrimaryTopicOf De_Branges's_theorem.