Matches in DBpedia 2014 for { <http://dbpedia.org/resource/De_Moivre's_formula> ?p ?o. }
Showing items 1 to 45 of
45
with 100 items per page.
- De_Moivre's_formula abstract "In mathematics, de Moivre's formula (a.k.a. De Moivre's theorem and De Moivre's identity), named after Abraham de Moivre, states that for any complex number (and, in particular, for any real number) x and integer n it holds thatWhile the formula was named after de Moivre, he never explicitly stated it in his works.The formula is important because it connects complex numbers (i stands for the imaginary unit (i2 = −1)) and trigonometry. The expression cos x + i sin x is sometimes abbreviated to cis x.By expanding the left hand side and then comparing the real and imaginary parts under the assumption that x is real, it is possible to derive useful expressions for cos(nx) and sin(nx) in terms of cos x and sin x. Furthermore, one can use a generalization of this formula to find explicit expressions for the nth roots of unity, that is, complex numbers z such that zn = 1.".
- De_Moivre's_formula wikiPageExternalLink DeMoivresTheoremForTrigIdentities.
- De_Moivre's_formula wikiPageID "57326".
- De_Moivre's_formula wikiPageRevisionID "605016988".
- De_Moivre's_formula hasPhotoCollection De_Moivre's_formula.
- De_Moivre's_formula id "p/d030300".
- De_Moivre's_formula title "De Moivre formula".
- De_Moivre's_formula subject Category:Articles_containing_proofs.
- De_Moivre's_formula subject Category:Theorems_in_complex_analysis.
- De_Moivre's_formula type Abstraction100002137.
- De_Moivre's_formula type Communication100033020.
- De_Moivre's_formula type Message106598915.
- De_Moivre's_formula type Proposition106750804.
- De_Moivre's_formula type Statement106722453.
- De_Moivre's_formula type Theorem106752293.
- De_Moivre's_formula type TheoremsInComplexAnalysis.
- De_Moivre's_formula comment "In mathematics, de Moivre's formula (a.k.a. De Moivre's theorem and De Moivre's identity), named after Abraham de Moivre, states that for any complex number (and, in particular, for any real number) x and integer n it holds thatWhile the formula was named after de Moivre, he never explicitly stated it in his works.The formula is important because it connects complex numbers (i stands for the imaginary unit (i2 = −1)) and trigonometry.".
- De_Moivre's_formula label "De Moivre's formula".
- De_Moivre's_formula label "Formula di de Moivre".
- De_Moivre's_formula label "Formule de De Moivre".
- De_Moivre's_formula label "Fórmula de De Moivre".
- De_Moivre's_formula label "Fórmula de De Moivre".
- De_Moivre's_formula label "Moivrescher Satz".
- De_Moivre's_formula label "Stelling van De Moivre".
- De_Moivre's_formula label "Wzór de Moivre’a".
- De_Moivre's_formula label "Формула Муавра".
- De_Moivre's_formula label "صيغة دي موافر".
- De_Moivre's_formula label "ド・モアブルの定理".
- De_Moivre's_formula label "棣莫弗公式".
- De_Moivre's_formula sameAs Moivreova_věta.
- De_Moivre's_formula sameAs Moivrescher_Satz.
- De_Moivre's_formula sameAs Fórmula_de_De_Moivre.
- De_Moivre's_formula sameAs Formule_de_De_Moivre.
- De_Moivre's_formula sameAs Formula_di_de_Moivre.
- De_Moivre's_formula sameAs ド・モアブルの定理.
- De_Moivre's_formula sameAs 드_무아브르의_공식.
- De_Moivre's_formula sameAs Stelling_van_De_Moivre.
- De_Moivre's_formula sameAs Wzór_de_Moivre’a.
- De_Moivre's_formula sameAs Fórmula_de_De_Moivre.
- De_Moivre's_formula sameAs m.0frvl.
- De_Moivre's_formula sameAs Q190556.
- De_Moivre's_formula sameAs Q190556.
- De_Moivre's_formula sameAs De_Moivre's_formula.
- De_Moivre's_formula wasDerivedFrom De_Moivre's_formula?oldid=605016988.
- De_Moivre's_formula isPrimaryTopicOf De_Moivre's_formula.