Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Dimension_(vector_space)> ?p ?o. }
Showing items 1 to 40 of
40
with 100 items per page.
- Dimension_(vector_space) abstract "In mathematics, the dimension of a vector space V is the cardinality (i.e. the number of vectors) of a basis of V.For every vector space there exists a basis, and all bases of a vector space have equal cardinality; as a result, the dimension of a vector space is uniquely defined. We say V is finite-dimensional if the dimension of V is finite.The dimension of the vector space V over the field F can be written as dimF(V) or as [V : F], read "dimension of V over F". When F can be inferred from context, often just dim(V) is written.".
- Dimension_(vector_space) wikiPageExternalLink lecture-9-independence-basis-and-dimension.
- Dimension_(vector_space) wikiPageID "38267".
- Dimension_(vector_space) wikiPageRevisionID "598020891".
- Dimension_(vector_space) hasPhotoCollection Dimension_(vector_space).
- Dimension_(vector_space) subject Category:Dimension.
- Dimension_(vector_space) subject Category:Linear_algebra.
- Dimension_(vector_space) subject Category:Vectors.
- Dimension_(vector_space) type Abstraction100002137.
- Dimension_(vector_space) type Cognition100023271.
- Dimension_(vector_space) type Concept105835747.
- Dimension_(vector_space) type Content105809192.
- Dimension_(vector_space) type Idea105833840.
- Dimension_(vector_space) type PsychologicalFeature100023100.
- Dimension_(vector_space) type Quantity105855125.
- Dimension_(vector_space) type Variable105857459.
- Dimension_(vector_space) type Vector105864577.
- Dimension_(vector_space) type Vectors.
- Dimension_(vector_space) comment "In mathematics, the dimension of a vector space V is the cardinality (i.e. the number of vectors) of a basis of V.For every vector space there exists a basis, and all bases of a vector space have equal cardinality; as a result, the dimension of a vector space is uniquely defined. We say V is finite-dimensional if the dimension of V is finite.The dimension of the vector space V over the field F can be written as dimF(V) or as [V : F], read "dimension of V over F".".
- Dimension_(vector_space) label "Dimensie (lineaire algebra)".
- Dimension_(vector_space) label "Dimension (vector space)".
- Dimension_(vector_space) label "Dimension d'un espace vectoriel".
- Dimension_(vector_space) label "Dimensione (spazio vettoriale)".
- Dimension_(vector_space) label "Dimensión de un espacio vectorial".
- Dimension_(vector_space) label "Конечномерное пространство".
- Dimension_(vector_space) label "بعد (فضاء متجهي)".
- Dimension_(vector_space) label "ハメル次元".
- Dimension_(vector_space) label "向量空间的维数".
- Dimension_(vector_space) sameAs Dimenze_vektorového_prostoru.
- Dimension_(vector_space) sameAs Dimensión_de_un_espacio_vectorial.
- Dimension_(vector_space) sameAs Dimension_d'un_espace_vectoriel.
- Dimension_(vector_space) sameAs Dimensione_(spazio_vettoriale).
- Dimension_(vector_space) sameAs ハメル次元.
- Dimension_(vector_space) sameAs Dimensie_(lineaire_algebra).
- Dimension_(vector_space) sameAs m.09jqz.
- Dimension_(vector_space) sameAs Q929302.
- Dimension_(vector_space) sameAs Q929302.
- Dimension_(vector_space) sameAs Dimension_(vector_space).
- Dimension_(vector_space) wasDerivedFrom Dimension_(vector_space)?oldid=598020891.
- Dimension_(vector_space) isPrimaryTopicOf Dimension_(vector_space).