Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Dirichlet's_approximation_theorem> ?p ?o. }
Showing items 1 to 35 of
35
with 100 items per page.
- Dirichlet's_approximation_theorem abstract "In number theory, Dirichlet's theorem on Diophantine approximation, also called Dirichlet's approximation theorem, states that for any real number α and any positive integer N, there exists integers p and q such that 1 ≤ q ≤ N andThis is a foundational result in diophantine approximation, showing that any real number has a sequence of good rational approximations: in fact an immediate consequence is that for a given irrational α, the inequality is satisfied by infinitely many integers p and q. This corollary also shows that the Thue–Siegel–Roth theorem, a result in the other direction, provides essentially the tightest possible bound, in the sense that the limits on rational approximation of algebraic numbers cannot be improved by lowering the exponent 2 + ε beyond 2.".
- Dirichlet's_approximation_theorem wikiPageID "2770230".
- Dirichlet's_approximation_theorem wikiPageRevisionID "574591493".
- Dirichlet's_approximation_theorem hasPhotoCollection Dirichlet's_approximation_theorem.
- Dirichlet's_approximation_theorem title "Dirichlet's Approximation Theorem".
- Dirichlet's_approximation_theorem urlname "DirichletsApproximationTheorem".
- Dirichlet's_approximation_theorem subject Category:Diophantine_approximation.
- Dirichlet's_approximation_theorem subject Category:Theorems_in_number_theory.
- Dirichlet's_approximation_theorem type Abstraction100002137.
- Dirichlet's_approximation_theorem type Communication100033020.
- Dirichlet's_approximation_theorem type Message106598915.
- Dirichlet's_approximation_theorem type Proposition106750804.
- Dirichlet's_approximation_theorem type Statement106722453.
- Dirichlet's_approximation_theorem type Theorem106752293.
- Dirichlet's_approximation_theorem type TheoremsInNumberTheory.
- Dirichlet's_approximation_theorem comment "In number theory, Dirichlet's theorem on Diophantine approximation, also called Dirichlet's approximation theorem, states that for any real number α and any positive integer N, there exists integers p and q such that 1 ≤ q ≤ N andThis is a foundational result in diophantine approximation, showing that any real number has a sequence of good rational approximations: in fact an immediate consequence is that for a given irrational α, the inequality is satisfied by infinitely many integers p and q.".
- Dirichlet's_approximation_theorem label "Benaderingsstelling van Dirichlet".
- Dirichlet's_approximation_theorem label "Dirichlet's approximation theorem".
- Dirichlet's_approximation_theorem label "Dirichletscher Approximationssatz".
- Dirichlet's_approximation_theorem label "Théorème d'approximation de Dirichlet".
- Dirichlet's_approximation_theorem label "Twierdzenie Dirichleta o aproksymacji".
- Dirichlet's_approximation_theorem label "Теорема Дирихле о диофантовых приближениях".
- Dirichlet's_approximation_theorem label "ディリクレのディオファントス近似定理".
- Dirichlet's_approximation_theorem sameAs Dirichletova_věta_o_aproximaci.
- Dirichlet's_approximation_theorem sameAs Dirichletscher_Approximationssatz.
- Dirichlet's_approximation_theorem sameAs Théorème_d'approximation_de_Dirichlet.
- Dirichlet's_approximation_theorem sameAs ディリクレのディオファントス近似定理.
- Dirichlet's_approximation_theorem sameAs Benaderingsstelling_van_Dirichlet.
- Dirichlet's_approximation_theorem sameAs Twierdzenie_Dirichleta_o_aproksymacji.
- Dirichlet's_approximation_theorem sameAs m.081n1r.
- Dirichlet's_approximation_theorem sameAs Q1227703.
- Dirichlet's_approximation_theorem sameAs Q1227703.
- Dirichlet's_approximation_theorem sameAs Dirichlet's_approximation_theorem.
- Dirichlet's_approximation_theorem wasDerivedFrom Dirichlet's_approximation_theorem?oldid=574591493.
- Dirichlet's_approximation_theorem isPrimaryTopicOf Dirichlet's_approximation_theorem.