Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Dirichlet's_theorem_on_arithmetic_progressions> ?p ?o. }
Showing items 1 to 49 of
49
with 100 items per page.
- Dirichlet's_theorem_on_arithmetic_progressions abstract "In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers a and d, there are infinitely many primes of the form a + nd, where n is a non-negative integer. In other words, there are infinitely many primes which are congruent to a modulo d. The numbers of the form a + nd form an arithmetic progressionand Dirichlet's theorem states that this sequence contains infinitely many prime numbers. The theorem extends Euclid's theorem that there are infinitely many prime numbers. Stronger forms of Dirichlet's theorem state that for any such arithmetic progression, the sum of the reciprocals of the prime numbers in the progression diverges and that different such arithmetic progressions with the same modulus have approximately the same proportions of primes. Equivalently, the primes are evenly distributed (asymptotically) among the congruence classes modulo d containing a's coprime to d.Dirichlet's theorem does not require that the sequence contains only prime numbers and deals with infinite sequences. For finite sequences, there exist arbitrarily long arithmetic progressions of primes, a theorem known as the Green–Tao theorem.".
- Dirichlet's_theorem_on_arithmetic_progressions wikiPageExternalLink 0808.1408.
- Dirichlet's_theorem_on_arithmetic_progressions wikiPageExternalLink 1837&seite:int=00000286.
- Dirichlet's_theorem_on_arithmetic_progressions wikiPageExternalLink DirichletsTheorem.
- Dirichlet's_theorem_on_arithmetic_progressions wikiPageExternalLink Dirichlet.html.
- Dirichlet's_theorem_on_arithmetic_progressions wikiPageID "101453".
- Dirichlet's_theorem_on_arithmetic_progressions wikiPageRevisionID "600934368".
- Dirichlet's_theorem_on_arithmetic_progressions authorlink "Atle Selberg".
- Dirichlet's_theorem_on_arithmetic_progressions first "Atle".
- Dirichlet's_theorem_on_arithmetic_progressions hasPhotoCollection Dirichlet's_theorem_on_arithmetic_progressions.
- Dirichlet's_theorem_on_arithmetic_progressions last "Selberg".
- Dirichlet's_theorem_on_arithmetic_progressions title "Dirichlet's Theorem".
- Dirichlet's_theorem_on_arithmetic_progressions urlname "DirichletsTheorem".
- Dirichlet's_theorem_on_arithmetic_progressions year "1946".
- Dirichlet's_theorem_on_arithmetic_progressions subject Category:Theorems_about_prime_numbers.
- Dirichlet's_theorem_on_arithmetic_progressions subject Category:Zeta_and_L-functions.
- Dirichlet's_theorem_on_arithmetic_progressions type Abstraction100002137.
- Dirichlet's_theorem_on_arithmetic_progressions type Communication100033020.
- Dirichlet's_theorem_on_arithmetic_progressions type Message106598915.
- Dirichlet's_theorem_on_arithmetic_progressions type Proposition106750804.
- Dirichlet's_theorem_on_arithmetic_progressions type Statement106722453.
- Dirichlet's_theorem_on_arithmetic_progressions type Theorem106752293.
- Dirichlet's_theorem_on_arithmetic_progressions type TheoremsAboutPrimeNumbers.
- Dirichlet's_theorem_on_arithmetic_progressions comment "In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers a and d, there are infinitely many primes of the form a + nd, where n is a non-negative integer. In other words, there are infinitely many primes which are congruent to a modulo d. The numbers of the form a + nd form an arithmetic progressionand Dirichlet's theorem states that this sequence contains infinitely many prime numbers.".
- Dirichlet's_theorem_on_arithmetic_progressions label "Dirichlet's theorem on arithmetic progressions".
- Dirichlet's_theorem_on_arithmetic_progressions label "Dirichletscher Primzahlsatz".
- Dirichlet's_theorem_on_arithmetic_progressions label "Stelling van Dirichlet over rekenkundige rijen".
- Dirichlet's_theorem_on_arithmetic_progressions label "Teorema de Dirichlet sobre progressões aritméticas".
- Dirichlet's_theorem_on_arithmetic_progressions label "Teorema de Dirichlet".
- Dirichlet's_theorem_on_arithmetic_progressions label "Teorema di Dirichlet".
- Dirichlet's_theorem_on_arithmetic_progressions label "Théorème de la progression arithmétique".
- Dirichlet's_theorem_on_arithmetic_progressions label "Теорема Дирихле о простых числах в арифметической прогрессии".
- Dirichlet's_theorem_on_arithmetic_progressions label "مبرهنة ديريشلت حول المتتاليات الحسابية".
- Dirichlet's_theorem_on_arithmetic_progressions label "狄利克雷定理".
- Dirichlet's_theorem_on_arithmetic_progressions label "算術級数定理".
- Dirichlet's_theorem_on_arithmetic_progressions sameAs Dirichletscher_Primzahlsatz.
- Dirichlet's_theorem_on_arithmetic_progressions sameAs Teorema_de_Dirichlet.
- Dirichlet's_theorem_on_arithmetic_progressions sameAs Théorème_de_la_progression_arithmétique.
- Dirichlet's_theorem_on_arithmetic_progressions sameAs Teorema_di_Dirichlet.
- Dirichlet's_theorem_on_arithmetic_progressions sameAs 算術級数定理.
- Dirichlet's_theorem_on_arithmetic_progressions sameAs 디리클레_등차수열_정리.
- Dirichlet's_theorem_on_arithmetic_progressions sameAs Stelling_van_Dirichlet_over_rekenkundige_rijen.
- Dirichlet's_theorem_on_arithmetic_progressions sameAs Teorema_de_Dirichlet_sobre_progressões_aritméticas.
- Dirichlet's_theorem_on_arithmetic_progressions sameAs m.0prnn.
- Dirichlet's_theorem_on_arithmetic_progressions sameAs Q550402.
- Dirichlet's_theorem_on_arithmetic_progressions sameAs Q550402.
- Dirichlet's_theorem_on_arithmetic_progressions sameAs Dirichlet's_theorem_on_arithmetic_progressions.
- Dirichlet's_theorem_on_arithmetic_progressions wasDerivedFrom Dirichlet's_theorem_on_arithmetic_progressions?oldid=600934368.
- Dirichlet's_theorem_on_arithmetic_progressions isPrimaryTopicOf Dirichlet's_theorem_on_arithmetic_progressions.