Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Ehresmann's_theorem> ?p ?o. }
Showing items 1 to 25 of
25
with 100 items per page.
- Ehresmann's_theorem abstract "In mathematics, Ehresmann's fibration theorem states that a smooth mapping f:M → Nwhere M and N are smooth manifolds, such thatf is a surjective submersion, andf is a proper map, (in particular if M is compact)is a locally trivial fibration. This is a foundational result in differential topology, and exists in many further variants. It is due to Charles Ehresmann.".
- Ehresmann's_theorem wikiPageID "981793".
- Ehresmann's_theorem wikiPageRevisionID "543610735".
- Ehresmann's_theorem hasPhotoCollection Ehresmann's_theorem.
- Ehresmann's_theorem subject Category:Theorems_in_differential_topology.
- Ehresmann's_theorem type Abstraction100002137.
- Ehresmann's_theorem type Communication100033020.
- Ehresmann's_theorem type Message106598915.
- Ehresmann's_theorem type Proposition106750804.
- Ehresmann's_theorem type Statement106722453.
- Ehresmann's_theorem type Theorem106752293.
- Ehresmann's_theorem type TheoremsInDifferentialTopology.
- Ehresmann's_theorem type TheoremsInTopology.
- Ehresmann's_theorem comment "In mathematics, Ehresmann's fibration theorem states that a smooth mapping f:M → Nwhere M and N are smooth manifolds, such thatf is a surjective submersion, andf is a proper map, (in particular if M is compact)is a locally trivial fibration. This is a foundational result in differential topology, and exists in many further variants. It is due to Charles Ehresmann.".
- Ehresmann's_theorem label "Ehresmann's theorem".
- Ehresmann's_theorem label "Satz von Ehresmann".
- Ehresmann's_theorem label "Théorème de Ehresmann".
- Ehresmann's_theorem sameAs Satz_von_Ehresmann.
- Ehresmann's_theorem sameAs Théorème_de_Ehresmann.
- Ehresmann's_theorem sameAs m.03wg6y.
- Ehresmann's_theorem sameAs Q867141.
- Ehresmann's_theorem sameAs Q867141.
- Ehresmann's_theorem sameAs Ehresmann's_theorem.
- Ehresmann's_theorem wasDerivedFrom Ehresmann's_theorem?oldid=543610735.
- Ehresmann's_theorem isPrimaryTopicOf Ehresmann's_theorem.