Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Fermat's_factorization_method> ?p ?o. }
Showing items 1 to 36 of
36
with 100 items per page.
- Fermat's_factorization_method abstract "Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares:That difference is algebraically factorable as if neither factor equals one, it is a proper factorization of N.Each odd number has such a representation. Indeed, if is a factorization of N, thenSince N is odd, then c and d are also odd, so those halves are integers. (A multiple of four is also a difference of squares: let c and d be even.)In its simplest form, Fermat's method might be even slower than trial division (worst case). Nonetheless, the combination of trial division and Fermat's is more effective than either.".
- Fermat's_factorization_method wikiPageExternalLink fermats-factorization-running-time.html.
- Fermat's_factorization_method wikiPageExternalLink home.html.
- Fermat's_factorization_method wikiPageID "2132433".
- Fermat's_factorization_method wikiPageRevisionID "596481309".
- Fermat's_factorization_method hasPhotoCollection Fermat's_factorization_method.
- Fermat's_factorization_method subject Category:Integer_factorization_algorithms.
- Fermat's_factorization_method type Abstraction100002137.
- Fermat's_factorization_method type Act100030358.
- Fermat's_factorization_method type Activity100407535.
- Fermat's_factorization_method type Algorithm105847438.
- Fermat's_factorization_method type Event100029378.
- Fermat's_factorization_method type IntegerFactorizationAlgorithms.
- Fermat's_factorization_method type Procedure101023820.
- Fermat's_factorization_method type PsychologicalFeature100023100.
- Fermat's_factorization_method type Rule105846932.
- Fermat's_factorization_method type YagoPermanentlyLocatedEntity.
- Fermat's_factorization_method comment "Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares:That difference is algebraically factorable as if neither factor equals one, it is a proper factorization of N.Each odd number has such a representation. Indeed, if is a factorization of N, thenSince N is odd, then c and d are also odd, so those halves are integers.".
- Fermat's_factorization_method label "Algorytm Fermata".
- Fermat's_factorization_method label "Faktorisierungsmethode von Fermat".
- Fermat's_factorization_method label "Fermat's factorization method".
- Fermat's_factorization_method label "Metodo di fattorizzazione di Fermat".
- Fermat's_factorization_method label "Méthode de factorisation de Fermat".
- Fermat's_factorization_method label "Método de factorización de Fermat".
- Fermat's_factorization_method label "Метод факторизации Ферма".
- Fermat's_factorization_method sameAs Faktorisierungsmethode_von_Fermat.
- Fermat's_factorization_method sameAs Método_de_factorización_de_Fermat.
- Fermat's_factorization_method sameAs Méthode_de_factorisation_de_Fermat.
- Fermat's_factorization_method sameAs Metodo_di_fattorizzazione_di_Fermat.
- Fermat's_factorization_method sameAs Algorytm_Fermata.
- Fermat's_factorization_method sameAs m.06p6z2.
- Fermat's_factorization_method sameAs Q983978.
- Fermat's_factorization_method sameAs Q983978.
- Fermat's_factorization_method sameAs Fermat's_factorization_method.
- Fermat's_factorization_method wasDerivedFrom Fermat's_factorization_method?oldid=596481309.
- Fermat's_factorization_method isPrimaryTopicOf Fermat's_factorization_method.