Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Fermat's_spiral> ?p ?o. }
Showing items 1 to 36 of
36
with 100 items per page.
- Fermat's_spiral abstract "Fermat's spiral (also known as a parabolic spiral) follows the equationin polar coordinates (the more general Fermat's spiral follows r 2 = a 2θ.)It is a type of Archimedean spiral.In disc phyllotaxis (sunflower, daisy), the mesh of spirals occurs in Fibonacci numbers because divergence (angle of succession in a single spiral arrangement) approaches the golden ratio. The shape of the spirals depends on the growth of the elements generated sequentially. In mature-disc phyllotaxis, when all the elements are the same size, the shape of the spirals is that of Fermat spirals—ideally. That is because Fermat's spiral traverses equal annuli in equal turns. The full model proposed by H Vogel in 1979 is where θ is the angle, r is the radius or distance from the center, and n is the index number of the floret and c is a constant scaling factor. The angle 137.508° is the golden angle which is approximated by ratios of Fibonacci numbers.Fermat's spiral has also been found to be an efficient layout for the mirrors of concentrated solar power plants.".
- Fermat's_spiral thumbnail Fermat's_spiral.svg?width=300.
- Fermat's_spiral wikiPageExternalLink Fermat's_spiral.
- Fermat's_spiral wikiPageID "199584".
- Fermat's_spiral wikiPageRevisionID "599854743".
- Fermat's_spiral hasPhotoCollection Fermat's_spiral.
- Fermat's_spiral id "p/f038420".
- Fermat's_spiral title "Fermat spiral".
- Fermat's_spiral subject Category:Spirals.
- Fermat's_spiral type Abstraction100002137.
- Fermat's_spiral type Attribute100024264.
- Fermat's_spiral type Curve113867641.
- Fermat's_spiral type Line113863771.
- Fermat's_spiral type Shape100027807.
- Fermat's_spiral type Spiral113876371.
- Fermat's_spiral type Spirals.
- Fermat's_spiral comment "Fermat's spiral (also known as a parabolic spiral) follows the equationin polar coordinates (the more general Fermat's spiral follows r 2 = a 2θ.)It is a type of Archimedean spiral.In disc phyllotaxis (sunflower, daisy), the mesh of spirals occurs in Fibonacci numbers because divergence (angle of succession in a single spiral arrangement) approaches the golden ratio. The shape of the spirals depends on the growth of the elements generated sequentially.".
- Fermat's_spiral label "Espiral de Fermat".
- Fermat's_spiral label "Espiral de Fermat".
- Fermat's_spiral label "Fermat's spiral".
- Fermat's_spiral label "Spirala Fermata".
- Fermat's_spiral label "Spirale di Fermat".
- Fermat's_spiral label "Спираль Ферма".
- Fermat's_spiral label "费马螺线".
- Fermat's_spiral sameAs Espiral_de_Fermat.
- Fermat's_spiral sameAs Fermaten_kiribila.
- Fermat's_spiral sameAs Spirale_di_Fermat.
- Fermat's_spiral sameAs Spirala_Fermata.
- Fermat's_spiral sameAs Espiral_de_Fermat.
- Fermat's_spiral sameAs m.01cbmj.
- Fermat's_spiral sameAs Q907869.
- Fermat's_spiral sameAs Q907869.
- Fermat's_spiral sameAs Fermat's_spiral.
- Fermat's_spiral wasDerivedFrom Fermat's_spiral?oldid=599854743.
- Fermat's_spiral depiction Fermat's_spiral.svg.
- Fermat's_spiral isPrimaryTopicOf Fermat's_spiral.