Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Friedrichs'_inequality> ?p ?o. }
Showing items 1 to 25 of
25
with 100 items per page.
- Friedrichs'_inequality abstract "In mathematics, Friedrichs' inequality is a theorem of functional analysis, due to Kurt Friedrichs. It places a bound on the Lp norm of a function using Lp bounds on the weak derivatives of the function and the geometry of the domain, and can be used to show that certain norms on Sobolev spaces are equivalent.".
- Friedrichs'_inequality wikiPageID "6613227".
- Friedrichs'_inequality wikiPageRevisionID "544520024".
- Friedrichs'_inequality hasPhotoCollection Friedrichs'_inequality.
- Friedrichs'_inequality subject Category:Inequalities.
- Friedrichs'_inequality subject Category:Sobolev_spaces.
- Friedrichs'_inequality type Abstraction100002137.
- Friedrichs'_inequality type Attribute100024264.
- Friedrichs'_inequality type Difference104748836.
- Friedrichs'_inequality type Inequalities.
- Friedrichs'_inequality type Inequality104752221.
- Friedrichs'_inequality type Quality104723816.
- Friedrichs'_inequality type SobolevSpaces.
- Friedrichs'_inequality type Space100028651.
- Friedrichs'_inequality comment "In mathematics, Friedrichs' inequality is a theorem of functional analysis, due to Kurt Friedrichs. It places a bound on the Lp norm of a function using Lp bounds on the weak derivatives of the function and the geometry of the domain, and can be used to show that certain norms on Sobolev spaces are equivalent.".
- Friedrichs'_inequality label "Disuguaglianza di Friedrichs".
- Friedrichs'_inequality label "Friedrichs' inequality".
- Friedrichs'_inequality label "Неравенство Фридрихса".
- Friedrichs'_inequality sameAs Disuguaglianza_di_Friedrichs.
- Friedrichs'_inequality sameAs m.0gdspn.
- Friedrichs'_inequality sameAs Q3711844.
- Friedrichs'_inequality sameAs Q3711844.
- Friedrichs'_inequality sameAs Friedrichs'_inequality.
- Friedrichs'_inequality wasDerivedFrom Friedrichs'_inequality?oldid=544520024.
- Friedrichs'_inequality isPrimaryTopicOf Friedrichs'_inequality.