Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Fundamental_lemma_(Langlands_program)> ?p ?o. }
Showing items 1 to 42 of
42
with 100 items per page.
- Fundamental_lemma_(Langlands_program) abstract "In the theory of automorphic forms, an area of mathematics, the fundamental lemma relates orbital integrals on a reductive group over a local field to stable orbital integrals on its endoscopic groups. It was conjectured by Langlands (1983) in the course of developing the Langlands program. The fundamental lemma was proved by Gérard Laumon and Ngô Bảo Châu in the case of unitary groups and then by Ngô for general reductive groups, building on a series of important reductions made by Jean-Loup Waldspurger to the case of Lie algebras. Time magazine placed Ngô's proof on the list of the "Top 10 scientific discoveries of 2009". In 2010 Ngô was awarded the Fields medal for this proof.".
- Fundamental_lemma_(Langlands_program) wikiPageExternalLink 124368.
- Fundamental_lemma_(Langlands_program) wikiPageExternalLink ICM2006.2.
- Fundamental_lemma_(Langlands_program) wikiPageExternalLink laumon.
- Fundamental_lemma_(Langlands_program) wikiPageExternalLink endoscopietordue.pdf.
- Fundamental_lemma_(Langlands_program) wikiPageExternalLink debuts.
- Fundamental_lemma_(Langlands_program) wikiPageID "25431009".
- Fundamental_lemma_(Langlands_program) wikiPageRevisionID "591268291".
- Fundamental_lemma_(Langlands_program) author2Link "Diana Shelstad".
- Fundamental_lemma_(Langlands_program) hasPhotoCollection Fundamental_lemma_(Langlands_program).
- Fundamental_lemma_(Langlands_program) last "Langlands".
- Fundamental_lemma_(Langlands_program) last "Shelstad".
- Fundamental_lemma_(Langlands_program) year "1987".
- Fundamental_lemma_(Langlands_program) subject Category:Algebraic_groups.
- Fundamental_lemma_(Langlands_program) subject Category:Automorphic_forms.
- Fundamental_lemma_(Langlands_program) subject Category:Langlands_program.
- Fundamental_lemma_(Langlands_program) subject Category:Theorems_in_algebra.
- Fundamental_lemma_(Langlands_program) subject Category:Theorems_in_number_theory.
- Fundamental_lemma_(Langlands_program) type Abstraction100002137.
- Fundamental_lemma_(Langlands_program) type AlgebraicGroups.
- Fundamental_lemma_(Langlands_program) type AutomorphicForms.
- Fundamental_lemma_(Langlands_program) type Communication100033020.
- Fundamental_lemma_(Langlands_program) type Form106290637.
- Fundamental_lemma_(Langlands_program) type Group100031264.
- Fundamental_lemma_(Langlands_program) type LanguageUnit106284225.
- Fundamental_lemma_(Langlands_program) type Message106598915.
- Fundamental_lemma_(Langlands_program) type Part113809207.
- Fundamental_lemma_(Langlands_program) type Proposition106750804.
- Fundamental_lemma_(Langlands_program) type Relation100031921.
- Fundamental_lemma_(Langlands_program) type Statement106722453.
- Fundamental_lemma_(Langlands_program) type Theorem106752293.
- Fundamental_lemma_(Langlands_program) type TheoremsInAlgebra.
- Fundamental_lemma_(Langlands_program) type TheoremsInNumberTheory.
- Fundamental_lemma_(Langlands_program) type Word106286395.
- Fundamental_lemma_(Langlands_program) comment "In the theory of automorphic forms, an area of mathematics, the fundamental lemma relates orbital integrals on a reductive group over a local field to stable orbital integrals on its endoscopic groups. It was conjectured by Langlands (1983) in the course of developing the Langlands program.".
- Fundamental_lemma_(Langlands_program) label "Fundamental lemma (Langlands program)".
- Fundamental_lemma_(Langlands_program) sameAs m.09k7gmv.
- Fundamental_lemma_(Langlands_program) sameAs Q57510.
- Fundamental_lemma_(Langlands_program) sameAs Q57510.
- Fundamental_lemma_(Langlands_program) sameAs Fundamental_lemma_(Langlands_program).
- Fundamental_lemma_(Langlands_program) wasDerivedFrom Fundamental_lemma_(Langlands_program)?oldid=591268291.
- Fundamental_lemma_(Langlands_program) isPrimaryTopicOf Fundamental_lemma_(Langlands_program).