Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Gerbaldi's_theorem> ?p ?o. }
Showing items 1 to 30 of
30
with 100 items per page.
- Gerbaldi's_theorem abstract "In linear algebra and projective geometry, Gerbaldi's theorem, proved by Gerbaldi (1882), states that one can find six pairwise apolar linearly independent nondegenerate ternary quadratic forms. These are permuted by the Valentiner group.".
- Gerbaldi's_theorem wikiPageID "31737114".
- Gerbaldi's_theorem wikiPageRevisionID "475241976".
- Gerbaldi's_theorem hasPhotoCollection Gerbaldi's_theorem.
- Gerbaldi's_theorem subject Category:Quadratic_forms.
- Gerbaldi's_theorem subject Category:Theorems_in_linear_algebra.
- Gerbaldi's_theorem subject Category:Theorems_in_projective_geometry.
- Gerbaldi's_theorem type Abstraction100002137.
- Gerbaldi's_theorem type Communication100033020.
- Gerbaldi's_theorem type Form106290637.
- Gerbaldi's_theorem type LanguageUnit106284225.
- Gerbaldi's_theorem type Message106598915.
- Gerbaldi's_theorem type Part113809207.
- Gerbaldi's_theorem type Proposition106750804.
- Gerbaldi's_theorem type QuadraticForms.
- Gerbaldi's_theorem type Relation100031921.
- Gerbaldi's_theorem type Statement106722453.
- Gerbaldi's_theorem type Theorem106752293.
- Gerbaldi's_theorem type TheoremsInGeometry.
- Gerbaldi's_theorem type TheoremsInLinearAlgebra.
- Gerbaldi's_theorem type TheoremsInProjectiveGeometry.
- Gerbaldi's_theorem type Word106286395.
- Gerbaldi's_theorem comment "In linear algebra and projective geometry, Gerbaldi's theorem, proved by Gerbaldi (1882), states that one can find six pairwise apolar linearly independent nondegenerate ternary quadratic forms. These are permuted by the Valentiner group.".
- Gerbaldi's_theorem label "Gerbaldi's theorem".
- Gerbaldi's_theorem sameAs m.0gtxzqd.
- Gerbaldi's_theorem sameAs Q5550363.
- Gerbaldi's_theorem sameAs Q5550363.
- Gerbaldi's_theorem sameAs Gerbaldi's_theorem.
- Gerbaldi's_theorem wasDerivedFrom Gerbaldi's_theorem?oldid=475241976.
- Gerbaldi's_theorem isPrimaryTopicOf Gerbaldi's_theorem.