Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Goldbach's_weak_conjecture> ?p ?o. }
Showing items 1 to 43 of
43
with 100 items per page.
- Goldbach's_weak_conjecture abstract "In number theory, Goldbach's weak conjecture, also known as the odd Goldbach conjecture, the ternary Goldbach problem, or the 3-primes problem, states that: Every odd number greater than 5 can be expressed as the sum of three primes. (A prime may be used more than once in the same sum.)This conjecture is called "weak" because if Goldbach's strong conjecture (concerning sums of two primes) is proven, it would be true. (Since if every even number greater than 4 is the sum of two odd primes, merely adding 3 to each even number greater than 4 will produce the odd numbers greater than 7.) In 2013, Harald Helfgott proved the conjecture for all odd integers greater than 5 (rather than the much larger implied by previous results).Some state the conjecture as:Every odd number greater than 7 can be expressed as the sum of three odd primes.This version excludes 7 = 2+2+3 because this requires the even prime 2. Helfgott's claim covers both versions of the conjecture.".
- Goldbach's_weak_conjecture wikiPageID "147164".
- Goldbach's_weak_conjecture wikiPageRevisionID "597024162".
- Goldbach's_weak_conjecture hasPhotoCollection Goldbach's_weak_conjecture.
- Goldbach's_weak_conjecture subject Category:Additive_number_theory.
- Goldbach's_weak_conjecture subject Category:Analytic_number_theory.
- Goldbach's_weak_conjecture subject Category:Conjectures_about_prime_numbers.
- Goldbach's_weak_conjecture type Abstraction100002137.
- Goldbach's_weak_conjecture type Cognition100023271.
- Goldbach's_weak_conjecture type Concept105835747.
- Goldbach's_weak_conjecture type ConjecturesAboutPrimeNumbers.
- Goldbach's_weak_conjecture type Content105809192.
- Goldbach's_weak_conjecture type Hypothesis105888929.
- Goldbach's_weak_conjecture type Idea105833840.
- Goldbach's_weak_conjecture type PsychologicalFeature100023100.
- Goldbach's_weak_conjecture type Speculation105891783.
- Goldbach's_weak_conjecture comment "In number theory, Goldbach's weak conjecture, also known as the odd Goldbach conjecture, the ternary Goldbach problem, or the 3-primes problem, states that: Every odd number greater than 5 can be expressed as the sum of three primes. (A prime may be used more than once in the same sum.)This conjecture is called "weak" because if Goldbach's strong conjecture (concerning sums of two primes) is proven, it would be true.".
- Goldbach's_weak_conjecture label "Congettura debole di Goldbach".
- Goldbach's_weak_conjecture label "Conjectura fraca de Goldbach".
- Goldbach's_weak_conjecture label "Conjecture faible de Goldbach".
- Goldbach's_weak_conjecture label "Conjetura débil de Goldbach".
- Goldbach's_weak_conjecture label "Goldbach's weak conjecture".
- Goldbach's_weak_conjecture label "Schwache Goldbach-Vermutung".
- Goldbach's_weak_conjecture label "Słaba hipoteza Goldbacha".
- Goldbach's_weak_conjecture label "Zwakke vermoeden van Goldbach".
- Goldbach's_weak_conjecture label "حدسية غولدباخ الضعيفة".
- Goldbach's_weak_conjecture label "弱いゴールドバッハ予想".
- Goldbach's_weak_conjecture label "弱哥德巴赫猜想".
- Goldbach's_weak_conjecture sameAs Schwache_Goldbach-Vermutung.
- Goldbach's_weak_conjecture sameAs Conjetura_débil_de_Goldbach.
- Goldbach's_weak_conjecture sameAs Conjecture_faible_de_Goldbach.
- Goldbach's_weak_conjecture sameAs Congettura_debole_di_Goldbach.
- Goldbach's_weak_conjecture sameAs 弱いゴールドバッハ予想.
- Goldbach's_weak_conjecture sameAs 약한_골트바흐의_추측.
- Goldbach's_weak_conjecture sameAs Zwakke_vermoeden_van_Goldbach.
- Goldbach's_weak_conjecture sameAs Słaba_hipoteza_Goldbacha.
- Goldbach's_weak_conjecture sameAs Conjectura_fraca_de_Goldbach.
- Goldbach's_weak_conjecture sameAs m.012t5x.
- Goldbach's_weak_conjecture sameAs Q2272638.
- Goldbach's_weak_conjecture sameAs Q2272638.
- Goldbach's_weak_conjecture sameAs Goldbach's_weak_conjecture.
- Goldbach's_weak_conjecture wasDerivedFrom Goldbach's_weak_conjecture?oldid=597024162.
- Goldbach's_weak_conjecture isPrimaryTopicOf Goldbach's_weak_conjecture.