Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Hua's_lemma> ?p ?o. }
Showing items 1 to 21 of
21
with 100 items per page.
- Hua's_lemma abstract "In mathematics, Hua's lemma, named for Hua Loo-keng, is an estimate for exponential sums.It states that if P is an integral-valued polynomial of degree k, is a positive real number, and f a real function defined bythen,where lies on a polygonal line with vertices".
- Hua's_lemma wikiPageID "4963399".
- Hua's_lemma wikiPageRevisionID "605378933".
- Hua's_lemma hasPhotoCollection Hua's_lemma.
- Hua's_lemma subject Category:Analytic_number_theory.
- Hua's_lemma subject Category:Lemmas.
- Hua's_lemma type Abstraction100002137.
- Hua's_lemma type Communication100033020.
- Hua's_lemma type Lemma106751833.
- Hua's_lemma type Lemmas.
- Hua's_lemma type Message106598915.
- Hua's_lemma type Proposition106750804.
- Hua's_lemma type Statement106722453.
- Hua's_lemma comment "In mathematics, Hua's lemma, named for Hua Loo-keng, is an estimate for exponential sums.It states that if P is an integral-valued polynomial of degree k, is a positive real number, and f a real function defined bythen,where lies on a polygonal line with vertices".
- Hua's_lemma label "Hua's lemma".
- Hua's_lemma sameAs m.0cxckb.
- Hua's_lemma sameAs Q5924839.
- Hua's_lemma sameAs Q5924839.
- Hua's_lemma sameAs Hua's_lemma.
- Hua's_lemma wasDerivedFrom Hua's_lemma?oldid=605378933.
- Hua's_lemma isPrimaryTopicOf Hua's_lemma.