Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Hudde's_rules> ?p ?o. }
Showing items 1 to 34 of
34
with 100 items per page.
- Hudde's_rules abstract "In mathematics, Hudde's rules are two properties of polynomial roots described by Johann Hudde.1. If r is a double root of the polynomial equationand if are numbers in arithmetic progression, then r is also a root ofThis definition is a form of the modern theorem that if r is a double root of ƒ(x) = 0, then r is a root of ƒ '(x) = 0.2. If for x = a the polynomialtakes on a relative maximum or minimum value, then a is a root of the equationThis definition is a modification of Fermat's theorem in the form that if ƒ(a) is a relative maximum or minimum value of a polynomial ƒ(x), then ƒ '(a) = 0.".
- Hudde's_rules wikiPageID "23716902".
- Hudde's_rules wikiPageRevisionID "563268235".
- Hudde's_rules hasPhotoCollection Hudde's_rules.
- Hudde's_rules subject Category:Polynomials.
- Hudde's_rules subject Category:Rules.
- Hudde's_rules subject Category:Theorems_in_algebra.
- Hudde's_rules type Abstraction100002137.
- Hudde's_rules type Cognition100023271.
- Hudde's_rules type Communication100033020.
- Hudde's_rules type Concept105835747.
- Hudde's_rules type Content105809192.
- Hudde's_rules type Function113783816.
- Hudde's_rules type Idea105833840.
- Hudde's_rules type MathematicalRelation113783581.
- Hudde's_rules type Message106598915.
- Hudde's_rules type Polynomial105861855.
- Hudde's_rules type Polynomials.
- Hudde's_rules type Proposition106750804.
- Hudde's_rules type PsychologicalFeature100023100.
- Hudde's_rules type Relation100031921.
- Hudde's_rules type Rule105846054.
- Hudde's_rules type Rules.
- Hudde's_rules type Statement106722453.
- Hudde's_rules type Theorem106752293.
- Hudde's_rules type TheoremsInAlgebra.
- Hudde's_rules comment "In mathematics, Hudde's rules are two properties of polynomial roots described by Johann Hudde.1. If r is a double root of the polynomial equationand if are numbers in arithmetic progression, then r is also a root ofThis definition is a form of the modern theorem that if r is a double root of ƒ(x) = 0, then r is a root of ƒ '(x) = 0.2.".
- Hudde's_rules label "Hudde's rules".
- Hudde's_rules sameAs m.06zpcjr.
- Hudde's_rules sameAs Q5928235.
- Hudde's_rules sameAs Q5928235.
- Hudde's_rules sameAs Hudde's_rules.
- Hudde's_rules wasDerivedFrom Hudde's_rules?oldid=563268235.
- Hudde's_rules isPrimaryTopicOf Hudde's_rules.