Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Invariant_(mathematics)> ?p ?o. }
Showing items 1 to 37 of
37
with 100 items per page.
- Invariant_(mathematics) abstract "In mathematics, an invariant is a property of a class of mathematical objects that remains unchanged when transformations of a certain type are applied to the objects. The particular class of objects and type of transformations are usually indicated by the context in which the term is used. For example, the area of a triangle is an invariant with respect to isometries of the Euclidean plane. The phrases "invariant under" and "invariant to" a transformation are both used. More generally, an invariant with respect to an equivalence relation is a property that is constant on each equivalence class. Invariants are used in diverse areas of mathematics such as geometry, topology and algebra. Some important classes of transformations are defined by an invariant they leave unchanged, for example conformal maps are defined as transformations of the plane that preserve angles. The discovery of invariants is an important step in the process of classifying mathematical objects.".
- Invariant_(mathematics) wikiPageExternalLink Invariant.html.
- Invariant_(mathematics) wikiPageID "1126638".
- Invariant_(mathematics) wikiPageRevisionID "605913484".
- Invariant_(mathematics) authorlink "Vladimir L. Popov".
- Invariant_(mathematics) first "V.L.".
- Invariant_(mathematics) hasPhotoCollection Invariant_(mathematics).
- Invariant_(mathematics) id "I/i052200".
- Invariant_(mathematics) last "Popov".
- Invariant_(mathematics) title "Invariant".
- Invariant_(mathematics) urlname "Invariant".
- Invariant_(mathematics) subject Category:Mathematical_terminology.
- Invariant_(mathematics) comment "In mathematics, an invariant is a property of a class of mathematical objects that remains unchanged when transformations of a certain type are applied to the objects. The particular class of objects and type of transformations are usually indicated by the context in which the term is used. For example, the area of a triangle is an invariant with respect to isometries of the Euclidean plane. The phrases "invariant under" and "invariant to" a transformation are both used.".
- Invariant_(mathematics) label "Invariant (mathematics)".
- Invariant_(mathematics) label "Invariant (wiskunde)".
- Invariant_(mathematics) label "Invariant".
- Invariant_(mathematics) label "Invariante (Mathematik)".
- Invariant_(mathematics) label "Invariante".
- Invariant_(mathematics) label "Invariante".
- Invariant_(mathematics) label "Invarianza (matematica)".
- Invariant_(mathematics) label "Niezmiennik przekształcenia".
- Invariant_(mathematics) label "Инвариант (математика)".
- Invariant_(mathematics) label "不変量".
- Invariant_(mathematics) sameAs Invariant_(matematika).
- Invariant_(mathematics) sameAs Invariante_(Mathematik).
- Invariant_(mathematics) sameAs Invariante.
- Invariant_(mathematics) sameAs Invariant.
- Invariant_(mathematics) sameAs Invarianza_(matematica).
- Invariant_(mathematics) sameAs 不変量.
- Invariant_(mathematics) sameAs Invariant_(wiskunde).
- Invariant_(mathematics) sameAs Niezmiennik_przekształcenia.
- Invariant_(mathematics) sameAs Invariante.
- Invariant_(mathematics) sameAs m.048jps.
- Invariant_(mathematics) sameAs Q188211.
- Invariant_(mathematics) sameAs Q188211.
- Invariant_(mathematics) wasDerivedFrom Invariant_(mathematics)?oldid=605913484.
- Invariant_(mathematics) isPrimaryTopicOf Invariant_(mathematics).