Matches in DBpedia 2014 for { <http://dbpedia.org/resource/James'_theorem> ?p ?o. }
Showing items 1 to 27 of
27
with 100 items per page.
- James'_theorem abstract "In mathematics, particularly functional analysis, James' theorem, named for Robert C. James, states that a Banach space B is reflexive if and only if every continuous linear functional on B attains its maximum on the closed unit ball in B.A stronger version of the theorem states that a weakly closed subset C of a Banach space B is weakly compact if and only if each continuous linear functional on B attains a maximum on C.The hypothesis of completeness in the theorem cannot be dropped (James 1971).".
- James'_theorem wikiPageID "17868139".
- James'_theorem wikiPageRevisionID "574723755".
- James'_theorem hasPhotoCollection James'_theorem.
- James'_theorem subject Category:Functional_analysis.
- James'_theorem subject Category:Theorems_in_functional_analysis.
- James'_theorem type Abstraction100002137.
- James'_theorem type Communication100033020.
- James'_theorem type Message106598915.
- James'_theorem type Proposition106750804.
- James'_theorem type Statement106722453.
- James'_theorem type Theorem106752293.
- James'_theorem type TheoremsInFunctionalAnalysis.
- James'_theorem comment "In mathematics, particularly functional analysis, James' theorem, named for Robert C.".
- James'_theorem label "James' theorem".
- James'_theorem label "Kompaktheitskriterium von James".
- James'_theorem label "Théorème de James".
- James'_theorem label "Twierdzenie Jamesa".
- James'_theorem sameAs Kompaktheitskriterium_von_James.
- James'_theorem sameAs Théorème_de_James.
- James'_theorem sameAs Twierdzenie_Jamesa.
- James'_theorem sameAs m.047bnft.
- James'_theorem sameAs Q1780722.
- James'_theorem sameAs Q1780722.
- James'_theorem sameAs James'_theorem.
- James'_theorem wasDerivedFrom James'_theorem?oldid=574723755.
- James'_theorem isPrimaryTopicOf James'_theorem.