Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Kleene's_recursion_theorem> ?p ?o. }
Showing items 1 to 30 of
30
with 100 items per page.
- Kleene's_recursion_theorem abstract "In computability theory, Kleene's recursion theorems are a pair of fundamental results about the application of computable functions to their own descriptions. The theorems were first proved by Stephen Kleene in 1938 and appear in his 1952 book Introduction to Metamathematics.The two recursion theorems can be applied to construct fixed points of certain operations on computable functions, to generate quines, and to construct functions defined via recursive definitions. The applicationto construction of a fixed point of any computable function is known as Rogers' theorem and is due to Hartley Rogers, Jr. (Rogers, 1967).".
- Kleene's_recursion_theorem wikiPageExternalLink Kleene%20-%20Ordinals.pdf.
- Kleene's_recursion_theorem wikiPageID "155407".
- Kleene's_recursion_theorem wikiPageRevisionID "581311229".
- Kleene's_recursion_theorem hasPhotoCollection Kleene's_recursion_theorem.
- Kleene's_recursion_theorem subject Category:Computability_theory.
- Kleene's_recursion_theorem subject Category:Theorems_in_the_foundations_of_mathematics.
- Kleene's_recursion_theorem type Abstraction100002137.
- Kleene's_recursion_theorem type Communication100033020.
- Kleene's_recursion_theorem type Message106598915.
- Kleene's_recursion_theorem type Proposition106750804.
- Kleene's_recursion_theorem type Statement106722453.
- Kleene's_recursion_theorem type Theorem106752293.
- Kleene's_recursion_theorem type TheoremsInTheFoundationsOfMathematics.
- Kleene's_recursion_theorem comment "In computability theory, Kleene's recursion theorems are a pair of fundamental results about the application of computable functions to their own descriptions. The theorems were first proved by Stephen Kleene in 1938 and appear in his 1952 book Introduction to Metamathematics.The two recursion theorems can be applied to construct fixed points of certain operations on computable functions, to generate quines, and to construct functions defined via recursive definitions.".
- Kleene's_recursion_theorem label "Kleene's recursion theorem".
- Kleene's_recursion_theorem label "Rekursionssatz".
- Kleene's_recursion_theorem label "Teorema da recursividade de Kleene".
- Kleene's_recursion_theorem label "Teorema di ricorsione di Kleene".
- Kleene's_recursion_theorem label "Théorème de récursion de Kleene".
- Kleene's_recursion_theorem sameAs Rekursionssatz.
- Kleene's_recursion_theorem sameAs Théorème_de_récursion_de_Kleene.
- Kleene's_recursion_theorem sameAs Teorema_di_ricorsione_di_Kleene.
- Kleene's_recursion_theorem sameAs Teorema_da_recursividade_de_Kleene.
- Kleene's_recursion_theorem sameAs m.014c24.
- Kleene's_recursion_theorem sameAs Q1933521.
- Kleene's_recursion_theorem sameAs Q1933521.
- Kleene's_recursion_theorem sameAs Kleene's_recursion_theorem.
- Kleene's_recursion_theorem wasDerivedFrom Kleene's_recursion_theorem?oldid=581311229.
- Kleene's_recursion_theorem isPrimaryTopicOf Kleene's_recursion_theorem.