Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Liouville's_theorem_(differential_algebra)> ?p ?o. }
Showing items 1 to 35 of
35
with 100 items per page.
- Liouville's_theorem_(differential_algebra) abstract "In mathematics, Liouville's theorem, originally formulated by Joseph Liouville in the 1830s and 1840s, places an important restriction on antiderivatives that can be expressed as elementary functions.The antiderivatives of certain elementary functions cannot themselves be expressed as elementary functions. A standard example of such a function is whose antiderivative is (with a multiplier of a constant) the error function, familiar from statistics. Other examples include the functions and Liouville's theorem states that elementary antiderivatives, if they exist, must be in the same differential field as the function, plus possibly a finite number of logarithms.".
- Liouville's_theorem_(differential_algebra) wikiPageExternalLink books?id=cJ9vByhPqQ8C.
- Liouville's_theorem_(differential_algebra) wikiPageExternalLink S0273-0979-96-00652-0.pdf.
- Liouville's_theorem_(differential_algebra) wikiPageExternalLink fea-magid.pdf.
- Liouville's_theorem_(differential_algebra) wikiPageExternalLink ms_papers.html.
- Liouville's_theorem_(differential_algebra) wikiPageID "9482601".
- Liouville's_theorem_(differential_algebra) wikiPageRevisionID "544688040".
- Liouville's_theorem_(differential_algebra) hasPhotoCollection Liouville's_theorem_(differential_algebra).
- Liouville's_theorem_(differential_algebra) subject Category:Differential_algebra.
- Liouville's_theorem_(differential_algebra) subject Category:Differential_equations.
- Liouville's_theorem_(differential_algebra) subject Category:Field_theory.
- Liouville's_theorem_(differential_algebra) subject Category:Theorems_in_algebra.
- Liouville's_theorem_(differential_algebra) type Abstraction100002137.
- Liouville's_theorem_(differential_algebra) type Communication100033020.
- Liouville's_theorem_(differential_algebra) type DifferentialEquation106670521.
- Liouville's_theorem_(differential_algebra) type DifferentialEquations.
- Liouville's_theorem_(differential_algebra) type Equation106669864.
- Liouville's_theorem_(differential_algebra) type MathematicalStatement106732169.
- Liouville's_theorem_(differential_algebra) type Message106598915.
- Liouville's_theorem_(differential_algebra) type Proposition106750804.
- Liouville's_theorem_(differential_algebra) type Statement106722453.
- Liouville's_theorem_(differential_algebra) type Theorem106752293.
- Liouville's_theorem_(differential_algebra) type TheoremsInAlgebra.
- Liouville's_theorem_(differential_algebra) comment "In mathematics, Liouville's theorem, originally formulated by Joseph Liouville in the 1830s and 1840s, places an important restriction on antiderivatives that can be expressed as elementary functions.The antiderivatives of certain elementary functions cannot themselves be expressed as elementary functions. A standard example of such a function is whose antiderivative is (with a multiplier of a constant) the error function, familiar from statistics.".
- Liouville's_theorem_(differential_algebra) label "Liouville's theorem (differential algebra)".
- Liouville's_theorem_(differential_algebra) label "Teorema de Liouville (álgebra diferencial)".
- Liouville's_theorem_(differential_algebra) label "Théorème de Liouville (algèbre différentielle)".
- Liouville's_theorem_(differential_algebra) sameAs Teorema_de_Liouville_(álgebra_diferencial).
- Liouville's_theorem_(differential_algebra) sameAs Théorème_de_Liouville_(algèbre_différentielle).
- Liouville's_theorem_(differential_algebra) sameAs m.0g9tg2y.
- Liouville's_theorem_(differential_algebra) sameAs Q2404702.
- Liouville's_theorem_(differential_algebra) sameAs Q2404702.
- Liouville's_theorem_(differential_algebra) sameAs Liouville's_theorem_(differential_algebra).
- Liouville's_theorem_(differential_algebra) wasDerivedFrom Liouville's_theorem_(differential_algebra)?oldid=544688040.
- Liouville's_theorem_(differential_algebra) isPrimaryTopicOf Liouville's_theorem_(differential_algebra).