Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Menelaus'_theorem> ?p ?o. }
Showing items 1 to 53 of
53
with 100 items per page.
- Menelaus'_theorem abstract "Menelaus' theorem, named for Menelaus of Alexandria, is a theorem about triangles in plane geometry. Given a triangle ABC, and a transversal line that crosses BC, AC and AB at points D, E and F respectively, with D, E, and F distinct from A, B and C, then or simply This equation uses signed lengths of segments, in other words the length AB is taken to be positive or negative according to whether A is to the left or right of B in some fixed orientation of the line. For example, AF/FB is defined as having positive value when F is between A and B and negative otherwise.The converse is also true: If points D, E and F are chosen on BC, AC and AB respectively so that then D, E and F are collinear. The converse is often included as part of the theorem.The theorem is very similar to Ceva's theorem in that their equations differ only in sign.".
- Menelaus'_theorem thumbnail Menelaus'_theorem_1.svg?width=300.
- Menelaus'_theorem wikiPageExternalLink books?id=r3ILAAAAYAAJ.
- Menelaus'_theorem wikiPageExternalLink MenelausTheorem.
- Menelaus'_theorem wikiPageExternalLink ?op=getobj&from=objects&id=3092.
- Menelaus'_theorem wikiPageExternalLink CevaAndMenelaus.shtml.
- Menelaus'_theorem wikiPageExternalLink MenelausFromCeva.shtml.
- Menelaus'_theorem wikiPageExternalLink kmath442.htm.
- Menelaus'_theorem wikiPageID "1480484".
- Menelaus'_theorem wikiPageRevisionID "597936391".
- Menelaus'_theorem hasPhotoCollection Menelaus'_theorem.
- Menelaus'_theorem title "Menelaus' Theorem".
- Menelaus'_theorem urlname "MenelausTheorem".
- Menelaus'_theorem subject Category:Affine_geometry.
- Menelaus'_theorem subject Category:Articles_containing_proofs.
- Menelaus'_theorem subject Category:Theorems_in_plane_geometry.
- Menelaus'_theorem subject Category:Triangle_geometry.
- Menelaus'_theorem type Abstraction100002137.
- Menelaus'_theorem type Communication100033020.
- Menelaus'_theorem type Message106598915.
- Menelaus'_theorem type Proposition106750804.
- Menelaus'_theorem type Statement106722453.
- Menelaus'_theorem type Theorem106752293.
- Menelaus'_theorem type TheoremsInPlaneGeometry.
- Menelaus'_theorem comment "Menelaus' theorem, named for Menelaus of Alexandria, is a theorem about triangles in plane geometry. Given a triangle ABC, and a transversal line that crosses BC, AC and AB at points D, E and F respectively, with D, E, and F distinct from A, B and C, then or simply This equation uses signed lengths of segments, in other words the length AB is taken to be positive or negative according to whether A is to the left or right of B in some fixed orientation of the line.".
- Menelaus'_theorem label "Menelaus' theorem".
- Menelaus'_theorem label "Satz von Menelaos".
- Menelaus'_theorem label "Stelling van Menelaos".
- Menelaus'_theorem label "Teorema de Menelao".
- Menelaus'_theorem label "Teorema di Menelao".
- Menelaus'_theorem label "Théorème de Ménélaüs".
- Menelaus'_theorem label "Twierdzenie Menelaosa".
- Menelaus'_theorem label "Теорема Менелая".
- Menelaus'_theorem label "مبرهنة مينلاوس".
- Menelaus'_theorem label "メネラウスの定理".
- Menelaus'_theorem label "梅涅劳斯定理".
- Menelaus'_theorem sameAs Meneláova_věta.
- Menelaus'_theorem sameAs Satz_von_Menelaos.
- Menelaus'_theorem sameAs Teorema_de_Menelao.
- Menelaus'_theorem sameAs Théorème_de_Ménélaüs.
- Menelaus'_theorem sameAs Teorema_di_Menelao.
- Menelaus'_theorem sameAs メネラウスの定理.
- Menelaus'_theorem sameAs 메넬라오스의_정리.
- Menelaus'_theorem sameAs Stelling_van_Menelaos.
- Menelaus'_theorem sameAs Twierdzenie_Menelaosa.
- Menelaus'_theorem sameAs Teorema_de_Menelaus.
- Menelaus'_theorem sameAs m.054v1q.
- Menelaus'_theorem sameAs Q193882.
- Menelaus'_theorem sameAs Q193882.
- Menelaus'_theorem sameAs Menelaus'_theorem.
- Menelaus'_theorem wasDerivedFrom Menelaus'_theorem?oldid=597936391.
- Menelaus'_theorem depiction Menelaus'_theorem_1.svg.
- Menelaus'_theorem isPrimaryTopicOf Menelaus'_theorem.