Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Morley's_trisector_theorem> ?p ?o. }
Showing items 1 to 48 of
48
with 100 items per page.
- Morley's_trisector_theorem abstract "In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all of the trisectors are intersected, one obtains four other equilateral triangles.".
- Morley's_trisector_theorem thumbnail Morley_triangle.svg?width=300.
- Morley's_trisector_theorem wikiPageExternalLink MorleysTheorem.
- Morley's_trisector_theorem wikiPageExternalLink MorleysTheorem.html.
- Morley's_trisector_theorem wikiPageExternalLink 3414848.pdf.
- Morley's_trisector_theorem wikiPageExternalLink kmath376.htm.
- Morley's_trisector_theorem wikiPageID "1096323".
- Morley's_trisector_theorem wikiPageRevisionID "561093672".
- Morley's_trisector_theorem authorlink "Alain Connes".
- Morley's_trisector_theorem first "Alain".
- Morley's_trisector_theorem hasPhotoCollection Morley's_trisector_theorem.
- Morley's_trisector_theorem last "Connes".
- Morley's_trisector_theorem year "1988".
- Morley's_trisector_theorem year "2004".
- Morley's_trisector_theorem subject Category:Theorems_in_plane_geometry.
- Morley's_trisector_theorem subject Category:Triangle_geometry.
- Morley's_trisector_theorem type Abstraction100002137.
- Morley's_trisector_theorem type Communication100033020.
- Morley's_trisector_theorem type Message106598915.
- Morley's_trisector_theorem type Proposition106750804.
- Morley's_trisector_theorem type Statement106722453.
- Morley's_trisector_theorem type Theorem106752293.
- Morley's_trisector_theorem type TheoremsInPlaneGeometry.
- Morley's_trisector_theorem comment "In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all of the trisectors are intersected, one obtains four other equilateral triangles.".
- Morley's_trisector_theorem label "Morley's trisector theorem".
- Morley's_trisector_theorem label "Morley-Dreieck".
- Morley's_trisector_theorem label "Teorema de Morley".
- Morley's_trisector_theorem label "Théorème de Morley".
- Morley's_trisector_theorem label "Trisectricestelling van Morley".
- Morley's_trisector_theorem label "Trysekcja Morleya".
- Morley's_trisector_theorem label "Теорема Морли".
- Morley's_trisector_theorem label "مبرهنة مورلي".
- Morley's_trisector_theorem label "モーリーの定理".
- Morley's_trisector_theorem label "莫雷角三分線定理".
- Morley's_trisector_theorem sameAs Morley-Dreieck.
- Morley's_trisector_theorem sameAs Teorema_de_Morley.
- Morley's_trisector_theorem sameAs Théorème_de_Morley.
- Morley's_trisector_theorem sameAs モーリーの定理.
- Morley's_trisector_theorem sameAs 몰리의_삼등분_정리.
- Morley's_trisector_theorem sameAs Trisectricestelling_van_Morley.
- Morley's_trisector_theorem sameAs Trysekcja_Morleya.
- Morley's_trisector_theorem sameAs m.045p1r.
- Morley's_trisector_theorem sameAs Q913447.
- Morley's_trisector_theorem sameAs Q913447.
- Morley's_trisector_theorem sameAs Morley's_trisector_theorem.
- Morley's_trisector_theorem wasDerivedFrom Morley's_trisector_theorem?oldid=561093672.
- Morley's_trisector_theorem depiction Morley_triangle.svg.
- Morley's_trisector_theorem isPrimaryTopicOf Morley's_trisector_theorem.