Matches in DBpedia 2014 for { <http://dbpedia.org/resource/NC_(complexity)> ?p ?o. }
Showing items 1 to 33 of
33
with 100 items per page.
- NC_(complexity) abstract "In complexity theory, the class NC (for "Nick's Class") is the set of decision problems decidable in polylogarithmic time on a parallel computer with a polynomial number of processors. In other words, a problem is in NC if there exist constants c and k such that it can be solved in time O(logc n) using O(nk) parallel processors. Stephen Cook coined the name "Nick's class" after Nick Pippenger, who had done extensive research on circuits with polylogarithmic depth and polynomial size.Just as the class P can be thought of as the tractable problems (Cobham's thesis), so NC can be thought of as the problems that can be efficiently solved on a parallel computer. NC is a subset of P because polylogarithmic parallel computations can be simulated by polynomial-time sequential ones. It is unknown whether NC = P, but most researchers suspect this to be false, meaning that there are probably some tractable problems that are "inherently sequential" and cannot significantly be sped up by using parallelism. Just as the class NP-Complete can be thought of as "probably intractable", so the class P-Complete, when using NC reductions, can be thought of as "probably not parallelizable" or "probably inherently sequential".The parallel computer in the definition can be assumed to be a parallel, random-access machine (PRAM). That is a parallel computer with a central pool of memory, and any processor can access any bit of memory in constant time. The definition of NC is not affected by the choice of how the PRAM handles simultaneous access to a single bit by more than one processor. It can be CRCW, CREW, or EREW. See PRAM for descriptions of those models.Equivalently, NC can be defined as those decision problems decidable by a uniform Boolean circuit (which can be calculated from the length of the input) with polylogarithmic depth and a polynomial number of gates.RNC is a class extending NC with access to randomness.".
- NC_(complexity) wikiPageExternalLink limits.pdf.
- NC_(complexity) wikiPageID "22073".
- NC_(complexity) wikiPageRevisionID "605485921".
- NC_(complexity) hasPhotoCollection NC_(complexity).
- NC_(complexity) subject Category:Circuit_complexity.
- NC_(complexity) subject Category:Complexity_classes.
- NC_(complexity) type Abstraction100002137.
- NC_(complexity) type Class107997703.
- NC_(complexity) type Collection107951464.
- NC_(complexity) type ComplexityClasses.
- NC_(complexity) type Group100031264.
- NC_(complexity) comment "In complexity theory, the class NC (for "Nick's Class") is the set of decision problems decidable in polylogarithmic time on a parallel computer with a polynomial number of processors. In other words, a problem is in NC if there exist constants c and k such that it can be solved in time O(logc n) using O(nk) parallel processors.".
- NC_(complexity) label "NC (Komplexitätsklasse)".
- NC_(complexity) label "NC (clase de complejidad)".
- NC_(complexity) label "NC (complessità)".
- NC_(complexity) label "NC (complexidade)".
- NC_(complexity) label "NC (complexity)".
- NC_(complexity) label "NC (complexité)".
- NC_(complexity) label "NC (計算複雑性理論)".
- NC_(complexity) sameAs NC_(Komplexitätsklasse).
- NC_(complexity) sameAs NC_(clase_de_complejidad).
- NC_(complexity) sameAs NC_(complexité).
- NC_(complexity) sameAs NC_(complessità).
- NC_(complexity) sameAs NC_(計算複雑性理論).
- NC_(complexity) sameAs NC_(복잡도).
- NC_(complexity) sameAs NC_(complexidade).
- NC_(complexity) sameAs m.05jrf.
- NC_(complexity) sameAs Q1141840.
- NC_(complexity) sameAs Q1141840.
- NC_(complexity) sameAs NC_(complexity).
- NC_(complexity) wasDerivedFrom NC_(complexity)?oldid=605485921.
- NC_(complexity) isPrimaryTopicOf NC_(complexity).