Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Parseval's_theorem> ?p ?o. }
Showing items 1 to 39 of
39
with 100 items per page.
- Parseval's_theorem abstract "In mathematics, Parseval's theorem usually refers to the result that the Fourier transform is unitary; loosely, that the sum (or integral) of the square of a function is equal to the sum (or integral) of the square of its transform. It originates from a 1799 theorem about series by Marc-Antoine Parseval, which was later applied to the Fourier series. It is also known as Rayleigh's energy theorem, or Rayleigh's Identity, after John William Strutt, Lord Rayleigh.Although the term "Parseval's theorem" is often used to describe the unitarity of any Fourier transform, especially in physics and engineering, the most general form of this property is more properly called the Plancherel theorem.".
- Parseval's_theorem wikiPageExternalLink Eight_Mathematical.pdf.
- Parseval's_theorem wikiPageExternalLink ParsevalsTheorem.html.
- Parseval's_theorem wikiPageExternalLink Parseval.html.
- Parseval's_theorem wikiPageID "706435".
- Parseval's_theorem wikiPageRevisionID "576804076".
- Parseval's_theorem hasPhotoCollection Parseval's_theorem.
- Parseval's_theorem subject Category:Theorems_in_Fourier_analysis.
- Parseval's_theorem subject Category:Theorems_in_harmonic_analysis.
- Parseval's_theorem type Abstraction100002137.
- Parseval's_theorem type Communication100033020.
- Parseval's_theorem type Message106598915.
- Parseval's_theorem type Proposition106750804.
- Parseval's_theorem type Statement106722453.
- Parseval's_theorem type Theorem106752293.
- Parseval's_theorem type TheoremsInFourierAnalysis.
- Parseval's_theorem type TheoremsInHarmonicAnalysis.
- Parseval's_theorem comment "In mathematics, Parseval's theorem usually refers to the result that the Fourier transform is unitary; loosely, that the sum (or integral) of the square of a function is equal to the sum (or integral) of the square of its transform. It originates from a 1799 theorem about series by Marc-Antoine Parseval, which was later applied to the Fourier series.".
- Parseval's_theorem label "Parseval's theorem".
- Parseval's_theorem label "Relación de Parseval".
- Parseval's_theorem label "Satz von Parseval".
- Parseval's_theorem label "Teorema de Parseval".
- Parseval's_theorem label "Teorema di Parseval".
- Parseval's_theorem label "Twierdzenie Parsevala".
- Parseval's_theorem label "Теорема Парсеваля".
- Parseval's_theorem label "パーセバルの定理".
- Parseval's_theorem label "帕塞瓦尔定理".
- Parseval's_theorem sameAs Satz_von_Parseval.
- Parseval's_theorem sameAs Relación_de_Parseval.
- Parseval's_theorem sameAs Teorema_di_Parseval.
- Parseval's_theorem sameAs パーセバルの定理.
- Parseval's_theorem sameAs Twierdzenie_Parsevala.
- Parseval's_theorem sameAs Teorema_de_Parseval.
- Parseval's_theorem sameAs m.034ddr.
- Parseval's_theorem sameAs Q1443036.
- Parseval's_theorem sameAs Q1443036.
- Parseval's_theorem sameAs Parseval's_theorem.
- Parseval's_theorem wasDerivedFrom Parseval's_theorem?oldid=576804076.
- Parseval's_theorem isPrimaryTopicOf Parseval's_theorem.