Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Pascal's_theorem> ?p ?o. }
Showing items 1 to 62 of
62
with 100 items per page.
- Pascal's_theorem abstract "In projective geometry, Pascal's theorem (also known as the Hexagrammum Mysticum Theorem) states that if an arbitrary six points are chosen on a conic (i.e., ellipse, parabola or hyperbola) and joined by line segments in any order to form a hexagon, then the three pairs of opposite sides of the hexagon (extended if necessary) meet in three points which lie on a straight line, called the Pascal line of the hexagon. The theorem is valid in the Euclidean plane, but the statement needs to be adjusted to deal with the special cases when opposite sides are parallel.".
- Pascal's_theorem thumbnail Pascaltheoremgenericwithlabels.svg?width=300.
- Pascal's_theorem wikiPageExternalLink v=onepage&q=smith%20source%20book&f=false.
- Pascal's_theorem wikiPageExternalLink index.php?id=6&no_cache=1&tx_dlf%5Bid%5D=548&tx_dlf%5Bpage%5D=19&cHash=7c32039131e4b3387740fbc6c9fd1cb8.
- Pascal's_theorem wikiPageExternalLink Pascal.shtml.
- Pascal's_theorem wikiPageExternalLink PascalLines.shtml.
- Pascal's_theorem wikiPageExternalLink pm-10-00024.PDF.
- Pascal's_theorem wikiPageExternalLink paper.html.
- Pascal's_theorem wikiPageExternalLink circlegeom.pdf.
- Pascal's_theorem wikiPageID "699966".
- Pascal's_theorem wikiPageRevisionID "605100331".
- Pascal's_theorem first "A.S.".
- Pascal's_theorem first "P.S.".
- Pascal's_theorem hasPhotoCollection Pascal's_theorem.
- Pascal's_theorem id "P/p071780".
- Pascal's_theorem last "Modenov".
- Pascal's_theorem last "Parkhomenko".
- Pascal's_theorem subject Category:Articles_containing_proofs.
- Pascal's_theorem subject Category:Blaise_Pascal.
- Pascal's_theorem subject Category:Conic_sections.
- Pascal's_theorem subject Category:Theorems_in_projective_geometry.
- Pascal's_theorem type Abstraction100002137.
- Pascal's_theorem type Attribute100024264.
- Pascal's_theorem type Communication100033020.
- Pascal's_theorem type ConicSection113872975.
- Pascal's_theorem type ConicSections.
- Pascal's_theorem type Figure113862780.
- Pascal's_theorem type Message106598915.
- Pascal's_theorem type PlaneFigure113863186.
- Pascal's_theorem type Proposition106750804.
- Pascal's_theorem type Shape100027807.
- Pascal's_theorem type Statement106722453.
- Pascal's_theorem type Theorem106752293.
- Pascal's_theorem type TheoremsInProjectiveGeometry.
- Pascal's_theorem comment "In projective geometry, Pascal's theorem (also known as the Hexagrammum Mysticum Theorem) states that if an arbitrary six points are chosen on a conic (i.e., ellipse, parabola or hyperbola) and joined by line segments in any order to form a hexagon, then the three pairs of opposite sides of the hexagon (extended if necessary) meet in three points which lie on a straight line, called the Pascal line of the hexagon.".
- Pascal's_theorem label "Pascal's theorem".
- Pascal's_theorem label "Satz von Pascal".
- Pascal's_theorem label "Stelling van Pascal".
- Pascal's_theorem label "Teorema de Pascal".
- Pascal's_theorem label "Teorema de Pascal".
- Pascal's_theorem label "Teorema di Pascal".
- Pascal's_theorem label "Théorème de Pascal".
- Pascal's_theorem label "Twierdzenie Pascala".
- Pascal's_theorem label "Теорема Паскаля".
- Pascal's_theorem label "パスカルの定理".
- Pascal's_theorem label "帕斯卡定理".
- Pascal's_theorem sameAs Satz_von_Pascal.
- Pascal's_theorem sameAs Teorema_de_Pascal.
- Pascal's_theorem sameAs Théorème_de_Pascal.
- Pascal's_theorem sameAs Teorema_di_Pascal.
- Pascal's_theorem sameAs パスカルの定理.
- Pascal's_theorem sameAs 파스칼의_정리.
- Pascal's_theorem sameAs Stelling_van_Pascal.
- Pascal's_theorem sameAs Twierdzenie_Pascala.
- Pascal's_theorem sameAs Teorema_de_Pascal.
- Pascal's_theorem sameAs m.033w0s.
- Pascal's_theorem sameAs Q899002.
- Pascal's_theorem sameAs Q899002.
- Pascal's_theorem sameAs Pascal's_theorem.
- Pascal's_theorem wasDerivedFrom Pascal's_theorem?oldid=605100331.
- Pascal's_theorem depiction Pascaltheoremgenericwithlabels.svg.
- Pascal's_theorem isPrimaryTopicOf Pascal's_theorem.