Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Peters_polynomials> ?p ?o. }
Showing items 1 to 21 of
21
with 100 items per page.
- Peters_polynomials abstract "In mathematics, the Peters polynomials sn(x) are polynomials studied by Peters (1956, 1956b) given by the generating function(Roman 1984, 4.4.6), (Boas & Buck 1958, p.37). They are a generalization of the Boole polynomials.".
- Peters_polynomials wikiPageExternalLink books?id=JpHjkhFLfpgC.
- Peters_polynomials wikiPageExternalLink books?id=eihMuwkh4DsC.
- Peters_polynomials wikiPageID "32999940".
- Peters_polynomials wikiPageRevisionID "448802643".
- Peters_polynomials hasPhotoCollection Peters_polynomials.
- Peters_polynomials subject Category:Polynomials.
- Peters_polynomials type Abstraction100002137.
- Peters_polynomials type Function113783816.
- Peters_polynomials type MathematicalRelation113783581.
- Peters_polynomials type Polynomial105861855.
- Peters_polynomials type Polynomials.
- Peters_polynomials type Relation100031921.
- Peters_polynomials comment "In mathematics, the Peters polynomials sn(x) are polynomials studied by Peters (1956, 1956b) given by the generating function(Roman 1984, 4.4.6), (Boas & Buck 1958, p.37). They are a generalization of the Boole polynomials.".
- Peters_polynomials label "Peters polynomials".
- Peters_polynomials sameAs m.0h52xfq.
- Peters_polynomials sameAs Q7178155.
- Peters_polynomials sameAs Q7178155.
- Peters_polynomials sameAs Peters_polynomials.
- Peters_polynomials wasDerivedFrom Peters_polynomials?oldid=448802643.
- Peters_polynomials isPrimaryTopicOf Peters_polynomials.