Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Poisson's_ratio> ?p ?o. }
Showing items 1 to 57 of
57
with 100 items per page.
- Poisson's_ratio abstract "Poisson's ratio, named after Siméon Poisson, is the negative ratio of transverse to axial strain. When a material is compressed in one direction, it usually tends to expand in the other two directions perpendicular or parallel to the direction of flow. This phenomenon is called the Poisson effect. Poisson's ratio (nu) is a measure of this effect. The Poisson ratio is the fraction (or percent) of expansion divided by the fraction (or percent) of compression, for small values of these changes.Conversely, if the material is stretched rather than compressed, it usually tends to contract in the directions transverse to the direction of stretching. This is a common observation when a rubber band is stretched, when it becomes noticeably thinner. Again, the Poisson ratio will be the ratio of relative contraction to relative expansion, and will have the same value as above. In certain rare cases, a material will actually shrink in the transverse direction when compressed (or expand when stretched) which will yield a negative value of the Poisson ratio.The Poisson's ratio of a stable, isotropic, linear elastic material cannot be less than −1.0 nor greater than 0.5 due to the requirement that Young's modulus, the shear modulus and bulk modulus have positive values. Most materials have Poisson's ratio values ranging between 0.0 and 0.5. A perfectly incompressible material deformed elastically at small strains would have a Poisson's ratio of exactly 0.5. Most steels and rigid polymers when used within their design limits (before yield) exhibit values of about 0.3, increasing to 0.5 for post-yield deformation (Seismic Performance of Steel-Encased Concrete Piles by RJT Park) (which occurs largely at constant volume.) Rubber has a Poisson ratio of nearly 0.5. Cork's Poisson ratio is close to 0: showing very little lateral expansion when compressed. Some materials, mostly polymer foams, have a negative Poisson's ratio; if these auxetic materials are stretched in one direction, they become thicker in perpendicular direction.Some anisotropic materials have one or more Poisson ratios above 0.5 in some directions.Assuming that the material is stretched or compressed along the axial direction (the x axis in the below diagram):whereis the resulting Poisson's ratio,is transverse strain (negative for axial tension (stretching), positive for axial compression) is axial strain (positive for axial tension, negative for axial compression).".
- Poisson's_ratio thumbnail PoissonRatio.svg?width=300.
- Poisson's_ratio wikiPageExternalLink auxetic.
- Poisson's_ratio wikiPageExternalLink Poisson.html.
- Poisson's_ratio wikiPageExternalLink PoissonIntro.html.
- Poisson's_ratio wikiPageID "241223".
- Poisson's_ratio wikiPageRevisionID "606477773".
- Poisson's_ratio hasPhotoCollection Poisson's_ratio.
- Poisson's_ratio subject Category:Dimensionless_numbers.
- Poisson's_ratio subject Category:Elasticity_(physics).
- Poisson's_ratio subject Category:Materials_science.
- Poisson's_ratio subject Category:Mechanics.
- Poisson's_ratio subject Category:Physical_quantities.
- Poisson's_ratio subject Category:Ratios.
- Poisson's_ratio subject Category:Solid_mechanics.
- Poisson's_ratio type Abstraction100002137.
- Poisson's_ratio type Amount105107765.
- Poisson's_ratio type Attribute100024264.
- Poisson's_ratio type DimensionlessNumbers.
- Poisson's_ratio type Magnitude105090441.
- Poisson's_ratio type MagnitudeRelation113815152.
- Poisson's_ratio type Measure100033615.
- Poisson's_ratio type Number105121418.
- Poisson's_ratio type PhysicalQuantities.
- Poisson's_ratio type Property104916342.
- Poisson's_ratio type Ratio113819207.
- Poisson's_ratio type Ratios.
- Poisson's_ratio type Relation100031921.
- Poisson's_ratio comment "Poisson's ratio, named after Siméon Poisson, is the negative ratio of transverse to axial strain. When a material is compressed in one direction, it usually tends to expand in the other two directions perpendicular or parallel to the direction of flow. This phenomenon is called the Poisson effect. Poisson's ratio (nu) is a measure of this effect.".
- Poisson's_ratio label "Coefficient de Poisson".
- Poisson's_ratio label "Coefficiente di Poisson".
- Poisson's_ratio label "Coeficiente de Poisson".
- Poisson's_ratio label "Coeficiente de Poisson".
- Poisson's_ratio label "Liczba Poissona".
- Poisson's_ratio label "Poisson's ratio".
- Poisson's_ratio label "Poisson-factor".
- Poisson's_ratio label "Poissonzahl".
- Poisson's_ratio label "Коэффициент Пуассона".
- Poisson's_ratio label "نسبة بواسون".
- Poisson's_ratio label "ポアソン比".
- Poisson's_ratio label "泊松比".
- Poisson's_ratio sameAs Poissonzahl.
- Poisson's_ratio sameAs Coeficiente_de_Poisson.
- Poisson's_ratio sameAs Coefficient_de_Poisson.
- Poisson's_ratio sameAs Coefficiente_di_Poisson.
- Poisson's_ratio sameAs ポアソン比.
- Poisson's_ratio sameAs 푸아송_비.
- Poisson's_ratio sameAs Poisson-factor.
- Poisson's_ratio sameAs Liczba_Poissona.
- Poisson's_ratio sameAs Coeficiente_de_Poisson.
- Poisson's_ratio sameAs m.01j_v5.
- Poisson's_ratio sameAs Q190453.
- Poisson's_ratio sameAs Q190453.
- Poisson's_ratio sameAs Poisson's_ratio.
- Poisson's_ratio wasDerivedFrom Poisson's_ratio?oldid=606477773.
- Poisson's_ratio depiction PoissonRatio.svg.
- Poisson's_ratio isPrimaryTopicOf Poisson's_ratio.