Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Sylvester's_law_of_inertia> ?p ?o. }
Showing items 1 to 40 of
40
with 100 items per page.
- Sylvester's_law_of_inertia abstract "Sylvester's law of inertia is a theorem in matrix algebra about certain properties of the coefficient matrix of a real quadratic form that remain invariant under a change of coordinates. Namely, if A is the symmetric matrix that defines the quadratic form, and S is any invertible matrix such that D = SAST is diagonal, then the number of negative elements in the diagonal of D is always the same, for all such S; and the same goes for the number of positive elements.This property is named after J. J. Sylvester who published its proof in 1852.".
- Sylvester's_law_of_inertia wikiPageExternalLink SylvestersLaw.html.
- Sylvester's_law_of_inertia wikiPageID "1127460".
- Sylvester's_law_of_inertia wikiPageRevisionID "585917116".
- Sylvester's_law_of_inertia hasPhotoCollection Sylvester's_law_of_inertia.
- Sylvester's_law_of_inertia subject Category:Linear_algebra.
- Sylvester's_law_of_inertia subject Category:Matrix_theory.
- Sylvester's_law_of_inertia subject Category:Quadratic_forms.
- Sylvester's_law_of_inertia subject Category:Theorems_in_algebra.
- Sylvester's_law_of_inertia type Abstraction100002137.
- Sylvester's_law_of_inertia type Communication100033020.
- Sylvester's_law_of_inertia type Form106290637.
- Sylvester's_law_of_inertia type LanguageUnit106284225.
- Sylvester's_law_of_inertia type Message106598915.
- Sylvester's_law_of_inertia type Part113809207.
- Sylvester's_law_of_inertia type Proposition106750804.
- Sylvester's_law_of_inertia type QuadraticForms.
- Sylvester's_law_of_inertia type Relation100031921.
- Sylvester's_law_of_inertia type Statement106722453.
- Sylvester's_law_of_inertia type Theorem106752293.
- Sylvester's_law_of_inertia type TheoremsInAlgebra.
- Sylvester's_law_of_inertia type Word106286395.
- Sylvester's_law_of_inertia comment "Sylvester's law of inertia is a theorem in matrix algebra about certain properties of the coefficient matrix of a real quadratic form that remain invariant under a change of coordinates. Namely, if A is the symmetric matrix that defines the quadratic form, and S is any invertible matrix such that D = SAST is diagonal, then the number of negative elements in the diagonal of D is always the same, for all such S; and the same goes for the number of positive elements.This property is named after J.".
- Sylvester's_law_of_inertia label "Loi d'inertie de Sylvester".
- Sylvester's_law_of_inertia label "Sylvester's law of inertia".
- Sylvester's_law_of_inertia label "Teorema di Sylvester".
- Sylvester's_law_of_inertia label "Trägheitssatz von Sylvester".
- Sylvester's_law_of_inertia label "Twierdzenie o bezwładności form kwadratowych".
- Sylvester's_law_of_inertia label "西尔维斯特惯性定理".
- Sylvester's_law_of_inertia sameAs Trägheitssatz_von_Sylvester.
- Sylvester's_law_of_inertia sameAs Loi_d'inertie_de_Sylvester.
- Sylvester's_law_of_inertia sameAs Teorema_di_Sylvester.
- Sylvester's_law_of_inertia sameAs 실베스터_관성법칙.
- Sylvester's_law_of_inertia sameAs Twierdzenie_o_bezwładności_form_kwadratowych.
- Sylvester's_law_of_inertia sameAs m.048mq6.
- Sylvester's_law_of_inertia sameAs Q1752621.
- Sylvester's_law_of_inertia sameAs Q1752621.
- Sylvester's_law_of_inertia sameAs Sylvester's_law_of_inertia.
- Sylvester's_law_of_inertia wasDerivedFrom Sylvester's_law_of_inertia?oldid=585917116.
- Sylvester's_law_of_inertia isPrimaryTopicOf Sylvester's_law_of_inertia.