Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Synge's_theorem> ?p ?o. }
Showing items 1 to 22 of
22
with 100 items per page.
- Synge's_theorem abstract "In mathematics, specifically Riemannian geometry, Synge's theorem is a classical result relating the curvature of a Riemannian manifold to its topology. It is named for John Lighton Synge, who proved it in 1936. Let M be a compact Riemannian manifold with positive sectional curvature. The theorem asserts: If M is even-dimensional and orientable, then M is simply connected. If M is odd-dimensional, then it is orientable.".
- Synge's_theorem wikiPageID "23524235".
- Synge's_theorem wikiPageRevisionID "545665887".
- Synge's_theorem hasPhotoCollection Synge's_theorem.
- Synge's_theorem subject Category:Theorems_in_Riemannian_geometry.
- Synge's_theorem type Abstraction100002137.
- Synge's_theorem type Communication100033020.
- Synge's_theorem type Message106598915.
- Synge's_theorem type Proposition106750804.
- Synge's_theorem type Statement106722453.
- Synge's_theorem type Theorem106752293.
- Synge's_theorem type TheoremsInRiemannianGeometry.
- Synge's_theorem comment "In mathematics, specifically Riemannian geometry, Synge's theorem is a classical result relating the curvature of a Riemannian manifold to its topology. It is named for John Lighton Synge, who proved it in 1936. Let M be a compact Riemannian manifold with positive sectional curvature. The theorem asserts: If M is even-dimensional and orientable, then M is simply connected. If M is odd-dimensional, then it is orientable.".
- Synge's_theorem label "Synge's theorem".
- Synge's_theorem label "Théorème de Synge".
- Synge's_theorem sameAs Théorème_de_Synge.
- Synge's_theorem sameAs m.06w3v52.
- Synge's_theorem sameAs Q3527171.
- Synge's_theorem sameAs Q3527171.
- Synge's_theorem sameAs Synge's_theorem.
- Synge's_theorem wasDerivedFrom Synge's_theorem?oldid=545665887.
- Synge's_theorem isPrimaryTopicOf Synge's_theorem.