Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Transversal_(combinatorics)> ?p ?o. }
Showing items 1 to 20 of
20
with 100 items per page.
- Transversal_(combinatorics) abstract "In combinatorial mathematics, given a collection C of sets, a transversal is a set containing exactly one element from each member of the collection. When the sets of the collection are mutually disjoint, each element of the transversal corresponds to exactly one member of C (the set it is a member of). If the original sets are not disjoint, there are two possibilities for the definition of a transversal. One variation, the one that mimics the situation when the sets are mutually disjoint, is that there is a bijection f from the transversal to C such that x is an element of f(x) for each x in the transversal. In this case, the transversal is also called a system of distinct representatives. The other, less commonly used, possibility does not require a one-to-one relation between the elements of the transversal and the sets of C. Loosely speaking, in this situation the members of the system of representatives are not necessarily distinct.A partial transversal is a set containing at most one element from each member of the collection, or (in the stricter form of the concept) a set with an injection from the set to C.The transversals of a finite collection C of finite sets form the basis sets of a matroid, the "transversal matroid" of C. The independent sets of the transversal matroid are the partial transversals of C.A generalization of the concept of a transversal would be a set that just has a non-empty intersection with each member of C. An example of this would be a Bernstein set, which is defined as a set that has a non-empty intersection with each set of C, but contains no set of C, where C is the collection of all perfect sets of a topological Polish space. As another example, let C consist of all the lines of a projective plane, then a blocking set in this plane is a set of points which intersects each line but contains no line.".
- Transversal_(combinatorics) wikiPageID "897733".
- Transversal_(combinatorics) wikiPageRevisionID "600477775".
- Transversal_(combinatorics) hasPhotoCollection Transversal_(combinatorics).
- Transversal_(combinatorics) subject Category:Combinatorics.
- Transversal_(combinatorics) subject Category:Group_theory.
- Transversal_(combinatorics) comment "In combinatorial mathematics, given a collection C of sets, a transversal is a set containing exactly one element from each member of the collection. When the sets of the collection are mutually disjoint, each element of the transversal corresponds to exactly one member of C (the set it is a member of). If the original sets are not disjoint, there are two possibilities for the definition of a transversal.".
- Transversal_(combinatorics) label "Transversaal".
- Transversal_(combinatorics) label "Transversal (combinatorics)".
- Transversal_(combinatorics) label "Transversal (matemática)".
- Transversal_(combinatorics) label "Transwersala".
- Transversal_(combinatorics) label "Трансверсаль".
- Transversal_(combinatorics) sameAs Transversal_(matemática).
- Transversal_(combinatorics) sameAs Transversaal.
- Transversal_(combinatorics) sameAs Transwersala.
- Transversal_(combinatorics) sameAs m.03mwhb.
- Transversal_(combinatorics) sameAs Q2208651.
- Transversal_(combinatorics) sameAs Q2208651.
- Transversal_(combinatorics) wasDerivedFrom Transversal_(combinatorics)?oldid=600477775.
- Transversal_(combinatorics) isPrimaryTopicOf Transversal_(combinatorics).