Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Urysohn's_lemma> ?p ?o. }
Showing items 1 to 49 of
49
with 100 items per page.
- Urysohn's_lemma abstract "In topology, Urysohn's lemma is a lemma that states that a topological space is normal if and only if any two disjoint closed subsets can be separated by a function.Urysohn's lemma is commonly used to construct continuous functions with various properties on normal spaces. It is widely applicable since all metric spaces and all compact Hausdorff spaces are normal. The lemma is generalized by (and usually used in the proof of) the Tietze extension theorem.The lemma is named after the mathematician Pavel Samuilovich Urysohn.".
- Urysohn's_lemma thumbnail Urysohn-function01.png?width=300.
- Urysohn's_lemma wikiPageExternalLink urysohn3.html.
- Urysohn's_lemma wikiPageID "49253".
- Urysohn's_lemma wikiPageRevisionID "593730034".
- Urysohn's_lemma hasPhotoCollection Urysohn's_lemma.
- Urysohn's_lemma id "3597".
- Urysohn's_lemma id "p/u095880".
- Urysohn's_lemma title "Urysohn lemma".
- Urysohn's_lemma title "proof of Urysohn's lemma".
- Urysohn's_lemma subject Category:Articles_containing_proofs.
- Urysohn's_lemma subject Category:Lemmas.
- Urysohn's_lemma subject Category:Separation_axioms.
- Urysohn's_lemma subject Category:Theorems_in_topology.
- Urysohn's_lemma subject Category:Topology.
- Urysohn's_lemma type Abstraction100002137.
- Urysohn's_lemma type AuditoryCommunication107109019.
- Urysohn's_lemma type Communication100033020.
- Urysohn's_lemma type Lemma106751833.
- Urysohn's_lemma type Lemmas.
- Urysohn's_lemma type Maxim107152948.
- Urysohn's_lemma type Message106598915.
- Urysohn's_lemma type Proposition106750804.
- Urysohn's_lemma type Saying107151380.
- Urysohn's_lemma type SeparationAxioms.
- Urysohn's_lemma type Speech107109196.
- Urysohn's_lemma type Statement106722453.
- Urysohn's_lemma comment "In topology, Urysohn's lemma is a lemma that states that a topological space is normal if and only if any two disjoint closed subsets can be separated by a function.Urysohn's lemma is commonly used to construct continuous functions with various properties on normal spaces. It is widely applicable since all metric spaces and all compact Hausdorff spaces are normal.".
- Urysohn's_lemma label "Lema de Urysohn".
- Urysohn's_lemma label "Lemat Urysohna".
- Urysohn's_lemma label "Lemma di Urysohn".
- Urysohn's_lemma label "Lemma van Urysohn".
- Urysohn's_lemma label "Lemma von Urysohn".
- Urysohn's_lemma label "Lemme d'Urysohn".
- Urysohn's_lemma label "Urysohn's lemma".
- Urysohn's_lemma label "乌雷松引理".
- Urysohn's_lemma sameAs Lemma_von_Urysohn.
- Urysohn's_lemma sameAs Lemme_d'Urysohn.
- Urysohn's_lemma sameAs Lemma_di_Urysohn.
- Urysohn's_lemma sameAs Lemma_van_Urysohn.
- Urysohn's_lemma sameAs Lemat_Urysohna.
- Urysohn's_lemma sameAs Lema_de_Urysohn.
- Urysohn's_lemma sameAs m.0d3zw.
- Urysohn's_lemma sameAs Q1816967.
- Urysohn's_lemma sameAs Q1816967.
- Urysohn's_lemma sameAs Urysohn's_lemma.
- Urysohn's_lemma wasDerivedFrom Urysohn's_lemma?oldid=593730034.
- Urysohn's_lemma depiction Urysohn-function01.png.
- Urysohn's_lemma isPrimaryTopicOf Urysohn's_lemma.