Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Zeeman's_comparison_theorem> ?p ?o. }
Showing items 1 to 28 of
28
with 100 items per page.
- Zeeman's_comparison_theorem abstract "In homological algebra, Zeeman's comparison theorem, introduced by Zeeman (1957), gives conditions for a morphism of spectral sequences to be an isomorphism.".
- Zeeman's_comparison_theorem wikiPageID "34681935".
- Zeeman's_comparison_theorem wikiPageRevisionID "476296096".
- Zeeman's_comparison_theorem hasPhotoCollection Zeeman's_comparison_theorem.
- Zeeman's_comparison_theorem subject Category:Homological_algebra.
- Zeeman's_comparison_theorem subject Category:Mathematical_theorems.
- Zeeman's_comparison_theorem subject Category:Spectral_sequences.
- Zeeman's_comparison_theorem type Abstraction100002137.
- Zeeman's_comparison_theorem type Arrangement107938773.
- Zeeman's_comparison_theorem type Communication100033020.
- Zeeman's_comparison_theorem type Group100031264.
- Zeeman's_comparison_theorem type MathematicalTheorems.
- Zeeman's_comparison_theorem type Message106598915.
- Zeeman's_comparison_theorem type Ordering108456993.
- Zeeman's_comparison_theorem type Proposition106750804.
- Zeeman's_comparison_theorem type Sequence108459252.
- Zeeman's_comparison_theorem type Series108457976.
- Zeeman's_comparison_theorem type SpectralSequences.
- Zeeman's_comparison_theorem type Statement106722453.
- Zeeman's_comparison_theorem type Theorem106752293.
- Zeeman's_comparison_theorem comment "In homological algebra, Zeeman's comparison theorem, introduced by Zeeman (1957), gives conditions for a morphism of spectral sequences to be an isomorphism.".
- Zeeman's_comparison_theorem label "Zeeman's comparison theorem".
- Zeeman's_comparison_theorem sameAs m.0j3f_qj.
- Zeeman's_comparison_theorem sameAs Q8068449.
- Zeeman's_comparison_theorem sameAs Q8068449.
- Zeeman's_comparison_theorem sameAs Zeeman's_comparison_theorem.
- Zeeman's_comparison_theorem wasDerivedFrom Zeeman's_comparison_theorem?oldid=476296096.
- Zeeman's_comparison_theorem isPrimaryTopicOf Zeeman's_comparison_theorem.