Matches in DBpedia 2014 for { <http://dbpedia.org/resource/6₃_knot> ?p ?o. }
Showing items 1 to 34 of
34
with 100 items per page.
- 6₃_knot abstract "In knot theory, the 63 knot is one of three prime knots with crossing number six, the others being the stevedore knot and the 62 knot.Like the figure-eight knot, the 63 knot is amphichiral, meaning that it is indistinguishable from its own mirror image. It is also invertible, meaning that orienting the curve in either direction yields the same oriented knot.The Alexander polynomial of the 63 knot isthe Conway polynomial isand the Jones polynomial isThe 63 knot is a hyperbolic knot, with its complement having a volume of approximately 5.69302.".
- 6₃_knot thumbnail Blue_6_3_Knot.png?width=300.
- 6₃_knot wikiPageID "26684180".
- 6₃_knot wikiPageRevisionID "605457682".
- 6₃_knot abNotation "63".
- 6₃_knot alternating "alternating".
- 6₃_knot arfInvariant "1".
- 6₃_knot braidLength "6".
- 6₃_knot braidNumber "3".
- 6₃_knot bridgeNumber "2".
- 6₃_knot class "hyperbolic".
- 6₃_knot conwayNotation "[2112]".
- 6₃_knot crosscapNumber "3".
- 6₃_knot crossingNumber "6".
- 6₃_knot dowkerNotation "48102126".
- 6₃_knot fibered "fibered".
- 6₃_knot genus "2".
- 6₃_knot hyperbolicVolume "5.69302".
- 6₃_knot lastCrossing "6".
- 6₃_knot lastOrder "2".
- 6₃_knot name "6".
- 6₃_knot nextCrossing "7".
- 6₃_knot nextOrder "1".
- 6₃_knot prime "prime".
- 6₃_knot stickNumber "8".
- 6₃_knot symmetry "fully amphichiral".
- 6₃_knot unknottingNumber "1".
- 6₃_knot comment "In knot theory, the 63 knot is one of three prime knots with crossing number six, the others being the stevedore knot and the 62 knot.Like the figure-eight knot, the 63 knot is amphichiral, meaning that it is indistinguishable from its own mirror image.".
- 6₃_knot label "6₃ knot".
- 6₃_knot sameAs 6%E2%82%83_knot.
- 6₃_knot sameAs Q4642851.
- 6₃_knot sameAs Q4642851.
- 6₃_knot wasDerivedFrom 6₃_knot?oldid=605457682.
- 6₃_knot depiction Blue_6_3_Knot.png.