Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Brahmagupta–Fibonacci_identity> ?p ?o. }
Showing items 1 to 29 of
29
with 100 items per page.
- Brahmagupta–Fibonacci_identity abstract "In algebra, the Brahmagupta–Fibonacci identity or simply Fibonacci's identity (and in fact due to Diophantus of Alexandria) says that the product of two sums each of two squares is itself a sum of two squares. In other words, the set of all sums of two squares is closed under multiplication. Specifically:For example,The identity is a special case (n = 2) of Lagrange's identity, and is first found in Diophantus. Brahmagupta proved and used a more general identity (the Brahmagupta identity), equivalent toshowing that the set of all numbers of the form is closed under multiplication.Both (1) and (2) can be verified by expanding each side of the equation. Also, (2) can be obtained from (1), or (1) from (2), by changing b to −b.This identity holds in both the ring of integers and the ring of rational numbers, and more generally in any commutative ring.In the integer case this identity finds applications in number theory for example when used in conjunction with one of Fermat's theorems it proves that the product of a square and any number of primes of the form 4n + 1 is also a sum of two squares.".
- Brahmagupta–Fibonacci_identity wikiPageID "326483".
- Brahmagupta–Fibonacci_identity wikiPageRevisionID "605876747".
- Brahmagupta–Fibonacci_identity subject Category:Algebra.
- Brahmagupta–Fibonacci_identity subject Category:Brahmagupta.
- Brahmagupta–Fibonacci_identity subject Category:Elementary_algebra.
- Brahmagupta–Fibonacci_identity subject Category:Mathematical_identities.
- Brahmagupta–Fibonacci_identity comment "In algebra, the Brahmagupta–Fibonacci identity or simply Fibonacci's identity (and in fact due to Diophantus of Alexandria) says that the product of two sums each of two squares is itself a sum of two squares. In other words, the set of all sums of two squares is closed under multiplication. Specifically:For example,The identity is a special case (n = 2) of Lagrange's identity, and is first found in Diophantus.".
- Brahmagupta–Fibonacci_identity label "Brahmagupta-Identität".
- Brahmagupta–Fibonacci_identity label "Brahmagupta–Fibonacci identity".
- Brahmagupta–Fibonacci_identity label "Identidad de Brahmagupta".
- Brahmagupta–Fibonacci_identity label "Identiteit van Brahmagupta-Fibonacci".
- Brahmagupta–Fibonacci_identity label "Identità di Brahmagupta".
- Brahmagupta–Fibonacci_identity label "Identité de Brahmagupta".
- Brahmagupta–Fibonacci_identity label "Tożsamość Brahmagupty".
- Brahmagupta–Fibonacci_identity label "مطابقة براهماغوبتا-فيبوناتشي".
- Brahmagupta–Fibonacci_identity label "ブラーマグプタの二平方恒等式".
- Brahmagupta–Fibonacci_identity label "婆罗摩笈多-斐波那契恒等式".
- Brahmagupta–Fibonacci_identity sameAs Brahmagupta%E2%80%93Fibonacci_identity.
- Brahmagupta–Fibonacci_identity sameAs Brahmagupta-Identität.
- Brahmagupta–Fibonacci_identity sameAs Identidad_de_Brahmagupta.
- Brahmagupta–Fibonacci_identity sameAs Identité_de_Brahmagupta.
- Brahmagupta–Fibonacci_identity sameAs Identità_di_Brahmagupta.
- Brahmagupta–Fibonacci_identity sameAs ブラーマグプタの二平方恒等式.
- Brahmagupta–Fibonacci_identity sameAs Identiteit_van_Brahmagupta-Fibonacci.
- Brahmagupta–Fibonacci_identity sameAs Tożsamość_Brahmagupty.
- Brahmagupta–Fibonacci_identity sameAs Q279090.
- Brahmagupta–Fibonacci_identity sameAs Q279090.
- Brahmagupta–Fibonacci_identity wasDerivedFrom Brahmagupta–Fibonacci_identity?oldid=605876747.