Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Continuous_functions_on_a_compact_Hausdorff_space> ?p ?o. }
Showing items 1 to 26 of
26
with 100 items per page.
- Continuous_functions_on_a_compact_Hausdorff_space abstract "In mathematical analysis, and especially functional analysis, a fundamental role is played by the space of continuous functions on a compact Hausdorff space with values in the real or complex numbers. This space, denoted by C(X), is a vector space with respect to the pointwise addition of functions and scalar multiplication by constants. It is, moreover, a normed space with norm defined bythe uniform norm. The uniform norm defines the topology of uniform convergence of functions on X. The space C(X) is a Banach algebra with respect to this norm. (Rudin 1973, §11.3)".
- Continuous_functions_on_a_compact_Hausdorff_space wikiPageID "17560674".
- Continuous_functions_on_a_compact_Hausdorff_space wikiPageRevisionID "597060129".
- Continuous_functions_on_a_compact_Hausdorff_space hasPhotoCollection Continuous_functions_on_a_compact_Hausdorff_space.
- Continuous_functions_on_a_compact_Hausdorff_space subject Category:Banach_spaces.
- Continuous_functions_on_a_compact_Hausdorff_space subject Category:Complex_analysis.
- Continuous_functions_on_a_compact_Hausdorff_space subject Category:Continuous_mappings.
- Continuous_functions_on_a_compact_Hausdorff_space subject Category:Functional_analysis.
- Continuous_functions_on_a_compact_Hausdorff_space subject Category:Real_analysis.
- Continuous_functions_on_a_compact_Hausdorff_space subject Category:Types_of_functions.
- Continuous_functions_on_a_compact_Hausdorff_space type Abstraction100002137.
- Continuous_functions_on_a_compact_Hausdorff_space type Attribute100024264.
- Continuous_functions_on_a_compact_Hausdorff_space type BanachSpaces.
- Continuous_functions_on_a_compact_Hausdorff_space type ContinuousMappings.
- Continuous_functions_on_a_compact_Hausdorff_space type Function113783816.
- Continuous_functions_on_a_compact_Hausdorff_space type MathematicalRelation113783581.
- Continuous_functions_on_a_compact_Hausdorff_space type Relation100031921.
- Continuous_functions_on_a_compact_Hausdorff_space type Space100028651.
- Continuous_functions_on_a_compact_Hausdorff_space comment "In mathematical analysis, and especially functional analysis, a fundamental role is played by the space of continuous functions on a compact Hausdorff space with values in the real or complex numbers. This space, denoted by C(X), is a vector space with respect to the pointwise addition of functions and scalar multiplication by constants. It is, moreover, a normed space with norm defined bythe uniform norm. The uniform norm defines the topology of uniform convergence of functions on X.".
- Continuous_functions_on_a_compact_Hausdorff_space label "Continuous functions on a compact Hausdorff space".
- Continuous_functions_on_a_compact_Hausdorff_space sameAs m.0466lk8.
- Continuous_functions_on_a_compact_Hausdorff_space sameAs Q5165477.
- Continuous_functions_on_a_compact_Hausdorff_space sameAs Q5165477.
- Continuous_functions_on_a_compact_Hausdorff_space sameAs Continuous_functions_on_a_compact_Hausdorff_space.
- Continuous_functions_on_a_compact_Hausdorff_space wasDerivedFrom Continuous_functions_on_a_compact_Hausdorff_space?oldid=597060129.
- Continuous_functions_on_a_compact_Hausdorff_space isPrimaryTopicOf Continuous_functions_on_a_compact_Hausdorff_space.