Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Engel_expansion> ?p ?o. }
Showing items 1 to 48 of
48
with 100 items per page.
- Engel_expansion abstract "The Engel expansion of a positive real number x is the unique non-decreasing sequence of positive integers such thatRational numbers have a finite Engel expansion, while irrational numbers have an infinite Engel expansion. If x is rational, its Engel expansion provides a representation of x as an Egyptian fraction. Engel expansions are named after Friedrich Engel, who studied them in 1913.An expansion analogous to an Engel expansion, in which alternating terms are negative, is called a Pierce expansion.".
- Engel_expansion wikiPageExternalLink item?id=JTNB_1991__3_1_43_0.
- Engel_expansion wikiPageExternalLink EngelExpansion.html.
- Engel_expansion wikiPageExternalLink Engel.
- Engel_expansion wikiPageExternalLink 36-2.html.
- Engel_expansion wikiPageExternalLink 1958-07.pdf.
- Engel_expansion wikiPageID "2967256".
- Engel_expansion wikiPageRevisionID "589240445".
- Engel_expansion hasPhotoCollection Engel_expansion.
- Engel_expansion subject Category:Continued_fractions.
- Engel_expansion subject Category:Egyptian_fractions.
- Engel_expansion subject Category:Mathematical_analysis.
- Engel_expansion type Abstraction100002137.
- Engel_expansion type Chemical114806838.
- Engel_expansion type ComplexNumber113729428.
- Engel_expansion type ContinuedFraction113736550.
- Engel_expansion type ContinuedFractions.
- Engel_expansion type DefiniteQuantity113576101.
- Engel_expansion type EgyptianFractions.
- Engel_expansion type Fraction113732078.
- Engel_expansion type Fraction114922107.
- Engel_expansion type Material114580897.
- Engel_expansion type Matter100020827.
- Engel_expansion type Measure100033615.
- Engel_expansion type Number113582013.
- Engel_expansion type Part113809207.
- Engel_expansion type PhysicalEntity100001930.
- Engel_expansion type RationalNumber113730469.
- Engel_expansion type RealNumber113729902.
- Engel_expansion type Relation100031921.
- Engel_expansion type Substance100019613.
- Engel_expansion comment "The Engel expansion of a positive real number x is the unique non-decreasing sequence of positive integers such thatRational numbers have a finite Engel expansion, while irrational numbers have an infinite Engel expansion. If x is rational, its Engel expansion provides a representation of x as an Egyptian fraction.".
- Engel_expansion label "Développement en série de Engel".
- Engel_expansion label "Engel expansion".
- Engel_expansion label "Engel-Entwicklung".
- Engel_expansion label "Engel-expansie".
- Engel_expansion label "Espansione di Engel".
- Engel_expansion label "恩格尔展开式".
- Engel_expansion sameAs Engel-Entwicklung.
- Engel_expansion sameAs Développement_en_série_de_Engel.
- Engel_expansion sameAs Espansione_di_Engel.
- Engel_expansion sameAs Engel-expansie.
- Engel_expansion sameAs m.08gntq.
- Engel_expansion sameAs Q279156.
- Engel_expansion sameAs Q279156.
- Engel_expansion sameAs Engel_expansion.
- Engel_expansion wasDerivedFrom Engel_expansion?oldid=589240445.
- Engel_expansion isPrimaryTopicOf Engel_expansion.