Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Filling_area_conjecture> ?p ?o. }
Showing items 1 to 33 of
33
with 100 items per page.
- Filling_area_conjecture abstract "In mathematics, in Riemannian geometry, Mikhail Gromov's filling area conjecture asserts that among all possible fillings of the Riemannian circle of length 2π by a surface with the strongly isometric property, the round hemisphere has the least area. Here the Riemannian circle refers to the unique closed 1-dimensional Riemannian manifold of total 1-volume 2π and Riemannian diameter π.".
- Filling_area_conjecture thumbnail Steiner's_Roman_Surface.gif?width=300.
- Filling_area_conjecture wikiPageID "12083818".
- Filling_area_conjecture wikiPageRevisionID "513480281".
- Filling_area_conjecture authors "Gromov, M.".
- Filling_area_conjecture hasPhotoCollection Filling_area_conjecture.
- Filling_area_conjecture journal "J. Diff. Geom.".
- Filling_area_conjecture pages "1".
- Filling_area_conjecture title "Filling Riemannian manifolds".
- Filling_area_conjecture volume "18".
- Filling_area_conjecture year "1983".
- Filling_area_conjecture subject Category:Area.
- Filling_area_conjecture subject Category:Conjectures.
- Filling_area_conjecture subject Category:Differential_geometry.
- Filling_area_conjecture subject Category:Differential_geometry_of_surfaces.
- Filling_area_conjecture subject Category:Riemannian_geometry.
- Filling_area_conjecture subject Category:Surfaces.
- Filling_area_conjecture subject Category:Systolic_geometry.
- Filling_area_conjecture type Artifact100021939.
- Filling_area_conjecture type Object100002684.
- Filling_area_conjecture type PhysicalEntity100001930.
- Filling_area_conjecture type Surface104362025.
- Filling_area_conjecture type Surfaces.
- Filling_area_conjecture type Whole100003553.
- Filling_area_conjecture comment "In mathematics, in Riemannian geometry, Mikhail Gromov's filling area conjecture asserts that among all possible fillings of the Riemannian circle of length 2π by a surface with the strongly isometric property, the round hemisphere has the least area. Here the Riemannian circle refers to the unique closed 1-dimensional Riemannian manifold of total 1-volume 2π and Riemannian diameter π.".
- Filling_area_conjecture label "Filling area conjecture".
- Filling_area_conjecture sameAs m.02vp94x.
- Filling_area_conjecture sameAs Q5448828.
- Filling_area_conjecture sameAs Q5448828.
- Filling_area_conjecture sameAs Filling_area_conjecture.
- Filling_area_conjecture wasDerivedFrom Filling_area_conjecture?oldid=513480281.
- Filling_area_conjecture depiction Steiner's_Roman_Surface.gif.
- Filling_area_conjecture isPrimaryTopicOf Filling_area_conjecture.