Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Fundamental_lemma_of_calculus_of_variations> ?p ?o. }
Showing items 1 to 39 of
39
with 100 items per page.
- Fundamental_lemma_of_calculus_of_variations abstract "In mathematics, specifically in the calculus of variations, the fundamental lemma of the calculus of variations states that if the definite integral of the product of a continuous function f(x) and h(x) is zero, for all continuous functions h(x) that vanish at the endpoints of the domain of integration and have their first two derivatives continuous, then f(x)=0. This lemma is used in deriving the Euler–Lagrange equation of the calculus of variations. It is a lemma that is typically used to transform a problem from its weak formulation (variational form) into its strong formulation (differential equation).".
- Fundamental_lemma_of_calculus_of_variations wikiPageID "2461914".
- Fundamental_lemma_of_calculus_of_variations wikiPageRevisionID "601543256".
- Fundamental_lemma_of_calculus_of_variations hasPhotoCollection Fundamental_lemma_of_calculus_of_variations.
- Fundamental_lemma_of_calculus_of_variations id "6745".
- Fundamental_lemma_of_calculus_of_variations title "Fundamental lemma of calculus of variations".
- Fundamental_lemma_of_calculus_of_variations subject Category:Calculus_of_variations.
- Fundamental_lemma_of_calculus_of_variations subject Category:Classical_mechanics.
- Fundamental_lemma_of_calculus_of_variations subject Category:Fundamental_theorems.
- Fundamental_lemma_of_calculus_of_variations subject Category:Lemmas.
- Fundamental_lemma_of_calculus_of_variations subject Category:Smooth_functions.
- Fundamental_lemma_of_calculus_of_variations type Abstraction100002137.
- Fundamental_lemma_of_calculus_of_variations type Communication100033020.
- Fundamental_lemma_of_calculus_of_variations type Function113783816.
- Fundamental_lemma_of_calculus_of_variations type FundamentalTheorems.
- Fundamental_lemma_of_calculus_of_variations type Lemma106751833.
- Fundamental_lemma_of_calculus_of_variations type Lemmas.
- Fundamental_lemma_of_calculus_of_variations type MathematicalRelation113783581.
- Fundamental_lemma_of_calculus_of_variations type Message106598915.
- Fundamental_lemma_of_calculus_of_variations type Proposition106750804.
- Fundamental_lemma_of_calculus_of_variations type Relation100031921.
- Fundamental_lemma_of_calculus_of_variations type SmoothFunctions.
- Fundamental_lemma_of_calculus_of_variations type Statement106722453.
- Fundamental_lemma_of_calculus_of_variations type Theorem106752293.
- Fundamental_lemma_of_calculus_of_variations comment "In mathematics, specifically in the calculus of variations, the fundamental lemma of the calculus of variations states that if the definite integral of the product of a continuous function f(x) and h(x) is zero, for all continuous functions h(x) that vanish at the endpoints of the domain of integration and have their first two derivatives continuous, then f(x)=0. This lemma is used in deriving the Euler–Lagrange equation of the calculus of variations.".
- Fundamental_lemma_of_calculus_of_variations label "Fundamental lemma of calculus of variations".
- Fundamental_lemma_of_calculus_of_variations label "Lema fundamental do cálculo das variações".
- Fundamental_lemma_of_calculus_of_variations label "Lemma fondamentale del calcolo delle variazioni".
- Fundamental_lemma_of_calculus_of_variations label "Lemme fondamental du calcul des variations".
- Fundamental_lemma_of_calculus_of_variations label "變分法基本引理".
- Fundamental_lemma_of_calculus_of_variations sameAs Lemme_fondamental_du_calcul_des_variations.
- Fundamental_lemma_of_calculus_of_variations sameAs Lemma_fondamentale_del_calcolo_delle_variazioni.
- Fundamental_lemma_of_calculus_of_variations sameAs Lema_fundamental_do_cálculo_das_variações.
- Fundamental_lemma_of_calculus_of_variations sameAs m.07fsbc.
- Fundamental_lemma_of_calculus_of_variations sameAs Q2474925.
- Fundamental_lemma_of_calculus_of_variations sameAs Q2474925.
- Fundamental_lemma_of_calculus_of_variations sameAs Fundamental_lemma_of_calculus_of_variations.
- Fundamental_lemma_of_calculus_of_variations wasDerivedFrom Fundamental_lemma_of_calculus_of_variations?oldid=601543256.
- Fundamental_lemma_of_calculus_of_variations isPrimaryTopicOf Fundamental_lemma_of_calculus_of_variations.