Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Gauss_map> ?p ?o. }
Showing items 1 to 35 of
35
with 100 items per page.
- Gauss_map abstract "In differential geometry, the Gauss map (named after Carl F. Gauss) maps a surface in Euclidean space R3 to the unit sphere S2. Namely, given a surface X lying in R3, the Gauss map is a continuous map N: X → S2 such that N(p) is a unit vector orthogonal to X at p, namely the normal vector to X at p.The Gauss map can be defined (globally) if and only if the surface is orientable, in which case its degree is half the Euler characteristic. The Gauss map can always be defined locally (i.e. on a small piece of the surface). The Jacobian determinant of the Gauss map is equal to Gaussian curvature, and the differential of the Gauss map is called the shape operator.Gauss first wrote a draft on the topic in 1825 and published in 1827.There is also a Gauss map for a link, which computes linking number.".
- Gauss_map thumbnail Gauss_map.svg?width=300.
- Gauss_map wikiPageExternalLink index.html.
- Gauss_map wikiPageID "378881".
- Gauss_map wikiPageRevisionID "600675093".
- Gauss_map hasPhotoCollection Gauss_map.
- Gauss_map title "Gauss Map".
- Gauss_map urlname "GaussMap".
- Gauss_map subject Category:Differential_geometry.
- Gauss_map subject Category:Differential_geometry_of_surfaces.
- Gauss_map subject Category:Riemannian_geometry.
- Gauss_map subject Category:Surfaces.
- Gauss_map type Artifact100021939.
- Gauss_map type Object100002684.
- Gauss_map type PhysicalEntity100001930.
- Gauss_map type Surface104362025.
- Gauss_map type Surfaces.
- Gauss_map type Whole100003553.
- Gauss_map comment "In differential geometry, the Gauss map (named after Carl F. Gauss) maps a surface in Euclidean space R3 to the unit sphere S2. Namely, given a surface X lying in R3, the Gauss map is a continuous map N: X → S2 such that N(p) is a unit vector orthogonal to X at p, namely the normal vector to X at p.The Gauss map can be defined (globally) if and only if the surface is orientable, in which case its degree is half the Euler characteristic. The Gauss map can always be defined locally (i.e.".
- Gauss_map label "Application de Gauss".
- Gauss_map label "Gauss map".
- Gauss_map label "Gauss-afbeelding".
- Gauss_map label "Gauß-Abbildung".
- Gauss_map label "Отображение Гаусса".
- Gauss_map label "高斯映射".
- Gauss_map sameAs Gauß-Abbildung.
- Gauss_map sameAs Application_de_Gauss.
- Gauss_map sameAs Gauss-afbeelding.
- Gauss_map sameAs m.021bk7.
- Gauss_map sameAs Q575710.
- Gauss_map sameAs Q575710.
- Gauss_map sameAs Gauss_map.
- Gauss_map wasDerivedFrom Gauss_map?oldid=600675093.
- Gauss_map depiction Gauss_map.svg.
- Gauss_map isPrimaryTopicOf Gauss_map.