Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Homogeneous_function> ?p ?o. }
Showing items 1 to 47 of
47
with 100 items per page.
- Homogeneous_function abstract "In mathematics, a homogeneous function is a function with multiplicative scaling behaviour: if the argument is multiplied by a factor, then the result is multiplied by some power of this factor. More precisely, if ƒ : V → W is a function between two vector spaces over a field F, and k is an integer, then ƒ is said to be homogeneous of degree k if</dl>for all nonzero α ∈ F and v ∈ V. This implies it has scale invariance. When the vector spaces involved are over the real numbers, a slightly more general form of homogeneity is often used, requiring only that (1) hold for all α > 0. Homogeneous functions can also be defined for vector spaces with the origin deleted, a fact that is used in the definition of sheaves on projective space in algebraic geometry. More generally, if S ⊂ V is any subset that is invariant under scalar multiplication by elements of the field (a "cone"), then an homogeneous function from S to W can still be defined by (1).".
- Homogeneous_function thumbnail HomogeneousDiscontinuousFunction.gif?width=300.
- Homogeneous_function wikiPageID "622844".
- Homogeneous_function wikiPageRevisionID "593504987".
- Homogeneous_function hasPhotoCollection Homogeneous_function.
- Homogeneous_function id "6381".
- Homogeneous_function id "p/h047670".
- Homogeneous_function title "Homogeneous function".
- Homogeneous_function subject Category:Differential_operators.
- Homogeneous_function subject Category:Linear_algebra.
- Homogeneous_function subject Category:Types_of_functions.
- Homogeneous_function type Abstraction100002137.
- Homogeneous_function type DifferentialOperators.
- Homogeneous_function type Function113783816.
- Homogeneous_function type MathematicalRelation113783581.
- Homogeneous_function type Operator113786413.
- Homogeneous_function type Relation100031921.
- Homogeneous_function comment "In mathematics, a homogeneous function is a function with multiplicative scaling behaviour: if the argument is multiplied by a factor, then the result is multiplied by some power of this factor. More precisely, if ƒ : V → W is a function between two vector spaces over a field F, and k is an integer, then ƒ is said to be homogeneous of degree k if</dl>for all nonzero α ∈ F and v ∈ V. This implies it has scale invariance.".
- Homogeneous_function label "Fonction homogène".
- Homogeneous_function label "Función homogénea".
- Homogeneous_function label "Funkcja jednorodna".
- Homogeneous_function label "Funzione omogenea".
- Homogeneous_function label "Função homogênea".
- Homogeneous_function label "Homogene Funktion".
- Homogeneous_function label "Homogeneous function".
- Homogeneous_function label "Homogeniteit (wiskunde)".
- Homogeneous_function label "Однородная функция".
- Homogeneous_function label "دالة متجانسة".
- Homogeneous_function label "斉次函数".
- Homogeneous_function label "齐次函数".
- Homogeneous_function sameAs Homogene_Funktion.
- Homogeneous_function sameAs Función_homogénea.
- Homogeneous_function sameAs Funtzio_homogeneo.
- Homogeneous_function sameAs Fonction_homogène.
- Homogeneous_function sameAs Funzione_omogenea.
- Homogeneous_function sameAs 斉次函数.
- Homogeneous_function sameAs 동차함수.
- Homogeneous_function sameAs Homogeniteit_(wiskunde).
- Homogeneous_function sameAs Funkcja_jednorodna.
- Homogeneous_function sameAs Função_homogênea.
- Homogeneous_function sameAs m.02xprn.
- Homogeneous_function sameAs Q1132952.
- Homogeneous_function sameAs Q1132952.
- Homogeneous_function sameAs Homogeneous_function.
- Homogeneous_function wasDerivedFrom Homogeneous_function?oldid=593504987.
- Homogeneous_function depiction HomogeneousDiscontinuousFunction.gif.
- Homogeneous_function isPrimaryTopicOf Homogeneous_function.