Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Landsberg–Schaar_relation> ?p ?o. }
Showing items 1 to 13 of
13
with 100 items per page.
- Landsberg–Schaar_relation abstract "In number theory and harmonic analysis, the Landsberg–Schaar relation (or identity) is the following equation, which is valid for arbitrary positive integers p and q:Although both sides are mere finite sums, no proof by entirely finite methods has yet been found. The standard way to prove it is to put , where in this identity due to Jacobi (which is essentially just a special case of the Poisson summation formula in classical harmonic analysis):and then let If we let q = 1, the identity reduces to a formula for the quadratic Gauss sum modulo p.The Landsberg–Schaar identity can be rephrased more symmetrically asprovided that we add the hypothesis that pq is an even number.".
- Landsberg–Schaar_relation wikiPageID "20207864".
- Landsberg–Schaar_relation wikiPageRevisionID "593158309".
- Landsberg–Schaar_relation subject Category:Analytic_number_theory.
- Landsberg–Schaar_relation subject Category:Theorems_in_number_theory.
- Landsberg–Schaar_relation comment "In number theory and harmonic analysis, the Landsberg–Schaar relation (or identity) is the following equation, which is valid for arbitrary positive integers p and q:Although both sides are mere finite sums, no proof by entirely finite methods has yet been found.".
- Landsberg–Schaar_relation label "Identité de Landsberg-Schaar".
- Landsberg–Schaar_relation label "Landsberg–Schaar relation".
- Landsberg–Schaar_relation sameAs Landsberg%E2%80%93Schaar_relation.
- Landsberg–Schaar_relation sameAs Identité_de_Landsberg-Schaar.
- Landsberg–Schaar_relation sameAs Q3147824.
- Landsberg–Schaar_relation sameAs Q3147824.
- Landsberg–Schaar_relation wasDerivedFrom Landsberg–Schaar_relation?oldid=593158309.