Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Lichnerowicz_conjecture> ?p ?o. }
Showing items 1 to 14 of
14
with 100 items per page.
- Lichnerowicz_conjecture abstract "In mathematics, the Lichnerowicz conjecture is a generalization of a conjecture introduced by Lichnerowicz (1944). Lichnerowicz's original conjecture was that locally harmonic 4-manifolds are locally symmetric, and was proved by Walker (1949). The Lichnerowicz conjecture usually refers to the generalization that locally harmonic manifolds are flat or rank-1 locally symmetric.".
- Lichnerowicz_conjecture wikiPageExternalLink 1214444087.
- Lichnerowicz_conjecture wikiPageExternalLink item?id=BSMF_1944__72__146_0.
- Lichnerowicz_conjecture wikiPageID "35535945".
- Lichnerowicz_conjecture wikiPageRevisionID "487947508".
- Lichnerowicz_conjecture hasPhotoCollection Lichnerowicz_conjecture.
- Lichnerowicz_conjecture subject Category:Riemannian_geometry.
- Lichnerowicz_conjecture comment "In mathematics, the Lichnerowicz conjecture is a generalization of a conjecture introduced by Lichnerowicz (1944). Lichnerowicz's original conjecture was that locally harmonic 4-manifolds are locally symmetric, and was proved by Walker (1949). The Lichnerowicz conjecture usually refers to the generalization that locally harmonic manifolds are flat or rank-1 locally symmetric.".
- Lichnerowicz_conjecture label "Lichnerowicz conjecture".
- Lichnerowicz_conjecture sameAs m.0j9k14t.
- Lichnerowicz_conjecture sameAs Q6543305.
- Lichnerowicz_conjecture sameAs Q6543305.
- Lichnerowicz_conjecture wasDerivedFrom Lichnerowicz_conjecture?oldid=487947508.
- Lichnerowicz_conjecture isPrimaryTopicOf Lichnerowicz_conjecture.