Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Ocean_dynamics> ?p ?o. }
Showing items 1 to 31 of
31
with 100 items per page.
- Ocean_dynamics abstract "Ocean dynamics define and describe the motion of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean (above the thermocline), and deep ocean.Ocean dynamics has traditionally been investigated by sampling from instruments in situ.The mixed layer is nearest to the surface and can vary in thickness from 10 to 500 meters. This layer has properties such as temperature, salinity and dissolved oxygen which are uniform with depth reflecting a history of active turbulence (the atmosphere has an analogous planetary boundary layer). Turbulence is high in the mixed layer. However, it becomes zero at the base of the mixed layer. Turbulence again increases below the base of the mixed layer due to shear instabilities. At extratropical latitudes this layer is deepest in late winter as a result of surface cooling and winter storms and quite shallow in summer. Its dynamics is governed by turbulent mixing as well as Ekman pumping, exchanges with the overlying atmosphere, and horizontal advection.The upper ocean, characterized by warm temperatures and active motion, varies in depth from 100 m or less in the tropics and eastern oceans to in excess of 800 meters in the western subtropical oceans. This layer exchanges properties such as heat and freshwater with the atmosphere on timescales of a few years. Below the mixed layer the upper ocean is generally governed by the hydrostatic and geostrophic relationships. Exceptions include the deep tropics and coastal regions.The deep ocean is both cold and dark with generally weak velocities (although limited areas of the deep ocean are known to have significant recirculations). The deep ocean is supplied with water from the upper ocean in only a few limited geographical regions: the subpolar North Atlantic and several sinking regions around the Antarctic. Because of the weak supply of water to the deep ocean the average residence time of water in the deep ocean is measured in hundreds of years. In this layer as well the hydrostatic and geostrophic relationships are generally valid and mixing is generally quite weak.".
- Ocean_dynamics wikiPageID "20536726".
- Ocean_dynamics wikiPageRevisionID "545510585".
- Ocean_dynamics hasPhotoCollection Ocean_dynamics.
- Ocean_dynamics subject Category:Dynamics.
- Ocean_dynamics subject Category:Ocean_currents.
- Ocean_dynamics subject Category:Ocean_energy.
- Ocean_dynamics subject Category:Water_waves.
- Ocean_dynamics type Abstraction100002137.
- Ocean_dynamics type ChangeOfLocation107311115.
- Ocean_dynamics type Current107406765.
- Ocean_dynamics type Event100029378.
- Ocean_dynamics type Flow107405893.
- Ocean_dynamics type Happening107283608.
- Ocean_dynamics type Movement107309781.
- Ocean_dynamics type OceanCurrent111488387.
- Ocean_dynamics type OceanCurrents.
- Ocean_dynamics type PsychologicalFeature100023100.
- Ocean_dynamics type WaterWaves.
- Ocean_dynamics type Wave107352190.
- Ocean_dynamics type YagoPermanentlyLocatedEntity.
- Ocean_dynamics comment "Ocean dynamics define and describe the motion of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean (above the thermocline), and deep ocean.Ocean dynamics has traditionally been investigated by sampling from instruments in situ.The mixed layer is nearest to the surface and can vary in thickness from 10 to 500 meters.".
- Ocean_dynamics label "Dinámica oceánica".
- Ocean_dynamics label "Ocean dynamics".
- Ocean_dynamics sameAs Dinámica_oceánica.
- Ocean_dynamics sameAs m.051vn4m.
- Ocean_dynamics sameAs Q7076138.
- Ocean_dynamics sameAs Q7076138.
- Ocean_dynamics sameAs Ocean_dynamics.
- Ocean_dynamics wasDerivedFrom Ocean_dynamics?oldid=545510585.
- Ocean_dynamics isPrimaryTopicOf Ocean_dynamics.