Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Wythoff_array> ?p ?o. }
Showing items 1 to 18 of
18
with 100 items per page.
- Wythoff_array abstract "In mathematics, the Wythoff array is an infinite matrix of integers derived from the Fibonacci sequence and named after Dutch mathematician Willem Abraham Wythoff. It was first defined by Morrison (1980) using Wythoff pairs, the coordinates of winning positions in Wythoff's game; it can also be defined using Fibonacci numbers and Zeckendorf's theorem, or directly from the golden ratio and the recurrence relation defining the Fibonacci numbers. Every positive integer occurs exactly once in the array, and every integer sequence defined by the Fibonacci recurrence can be derived by shifting a row of the array.".
- Wythoff_array wikiPageExternalLink stolarsky.pdf.
- Wythoff_array wikiPageExternalLink kimberling.pdf.
- Wythoff_array wikiPageExternalLink stolarsky.pdf.
- Wythoff_array wikiPageID "36264444".
- Wythoff_array wikiPageRevisionID "588357940".
- Wythoff_array hasPhotoCollection Wythoff_array.
- Wythoff_array title "Wythoff Array".
- Wythoff_array urlname "WythoffArray".
- Wythoff_array subject Category:Fibonacci_numbers.
- Wythoff_array subject Category:Triangles_of_numbers.
- Wythoff_array comment "In mathematics, the Wythoff array is an infinite matrix of integers derived from the Fibonacci sequence and named after Dutch mathematician Willem Abraham Wythoff. It was first defined by Morrison (1980) using Wythoff pairs, the coordinates of winning positions in Wythoff's game; it can also be defined using Fibonacci numbers and Zeckendorf's theorem, or directly from the golden ratio and the recurrence relation defining the Fibonacci numbers.".
- Wythoff_array label "Wythoff array".
- Wythoff_array sameAs m.0k2f4pq.
- Wythoff_array sameAs Q8040666.
- Wythoff_array sameAs Q8040666.
- Wythoff_array wasDerivedFrom Wythoff_array?oldid=588357940.
- Wythoff_array isPrimaryTopicOf Wythoff_array.