Matches in Ghent University Academic Bibliography for { <https://biblio.ugent.be/publication/01HPEW91H5RW6FSFQCECKA8XVC> ?p ?o. }
Showing items 1 to 24 of
24
with 100 items per page.
- 01HPEW91H5RW6FSFQCECKA8XVC classification A2.
- 01HPEW91H5RW6FSFQCECKA8XVC date "2024".
- 01HPEW91H5RW6FSFQCECKA8XVC language "eng".
- 01HPEW91H5RW6FSFQCECKA8XVC type journalArticle.
- 01HPEW91H5RW6FSFQCECKA8XVC hasPart 01HPEWANXN4FQ4D8TJZJY8KNY3.pdf.
- 01HPEW91H5RW6FSFQCECKA8XVC subject "Biology and Life Sciences".
- 01HPEW91H5RW6FSFQCECKA8XVC doi "10.3390/applmicrobiol4010012".
- 01HPEW91H5RW6FSFQCECKA8XVC issn "2673-8007".
- 01HPEW91H5RW6FSFQCECKA8XVC issue "1".
- 01HPEW91H5RW6FSFQCECKA8XVC volume "4".
- 01HPEW91H5RW6FSFQCECKA8XVC abstract "Methane-producing Archaea can be found in a variety of habitats, including the gastrointestinal tract, where they are linked to various diseases. The majority of current monitoring methods can be slow and laborious. To facilitate gut methanogenic Archaea detection, we investigated flow cytometry for rapid quantification based on the autofluorescent F420 cofactor, an essential coenzyme in methanogenesis. The methanogenic population was distinguishable from the SYBR green (SG) and SYBR green/propidium iodide (SGPI) stained background microbiome based on elevated 452 nm emission in Methanobrevibacter smithii spiked controls. As a proof-of-concept, elevated F420-autofluorescence was used to detect and quantify methanogens in 10 faecal samples and 241 in vitro incubated faecal samples. The methanogenic population in faeces, determined through Archaea-specific 16S rRNA gene amplicon sequencing, consisted of Methanobrevibacter and Methanomassiliicoccus. F420-based methanogen quantification in SG and SGPI-stained faecal samples showed an accuracy of 90 and 100% against Archaea proportions determined with universal primers. When compared to methane and Archaea presence, methanogen categorisation in in vitro incubated faeces exhibited an accuracy of 71 and 75%, with a precision of 42 and 70%, respectively. To conclude, flow cytometry is a reproducible and fast method for the detection and quantification of gut methanogenic Archaea.".
- 01HPEW91H5RW6FSFQCECKA8XVC author 0F517F12-F0EE-11E1-A9DE-61C894A0A6B4.
- 01HPEW91H5RW6FSFQCECKA8XVC author 4B86D0EE-FC5C-11E1-8B8A-AC6710BDE39D.
- 01HPEW91H5RW6FSFQCECKA8XVC author F56DD06E-F0ED-11E1-A9DE-61C894A0A6B4.
- 01HPEW91H5RW6FSFQCECKA8XVC author F5FDB080-F0ED-11E1-A9DE-61C894A0A6B4.
- 01HPEW91H5RW6FSFQCECKA8XVC author FC0240EA-F0ED-11E1-A9DE-61C894A0A6B4.
- 01HPEW91H5RW6FSFQCECKA8XVC author urn:uuid:6686ef10-9d9a-4c86-aef1-e98e2876cf7f.
- 01HPEW91H5RW6FSFQCECKA8XVC dateCreated "2024-02-12T14:41:58Z".
- 01HPEW91H5RW6FSFQCECKA8XVC dateModified "2024-07-09T15:32:07Z".
- 01HPEW91H5RW6FSFQCECKA8XVC name "Methanogenic archaea quantification in the human gut microbiome with F420 autofluorescence-based flow cytometry".
- 01HPEW91H5RW6FSFQCECKA8XVC pagination urn:uuid:dec45113-0d2f-4184-9a38-cb7d0e00da70.
- 01HPEW91H5RW6FSFQCECKA8XVC sameAs LU-01HPEW91H5RW6FSFQCECKA8XVC.
- 01HPEW91H5RW6FSFQCECKA8XVC sourceOrganization urn:uuid:9d5c5039-f1a8-454d-a64b-6b342c78b43a.
- 01HPEW91H5RW6FSFQCECKA8XVC type A2.